Skip to main content

Advertisement

Log in

The study of thiazole adsorption upon BC2N nanotube: DFT/TD-DFT investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Herein, we evaluated the adsorption of thiazole over the surface of BC2N nanotube using PBE and M06-2X functionals and 6-311G** standard basis set. We considered one and two thiazole molecules over the outer sidewall of BC2N nanotube. Furthermore, we found that the adsorption energy of thiazole (state II) from its nitrogen head on the boron atom of BC2N nanotube is greater than other states (about − 0.90 eV by PBE and − 1.09 eV by M06-2X functional). It was found that the energy gap of BC2N nanotube is significantly reduced from 0.61 to 0.25 eV after the thiazole adsorption (state II). Our results also indicated that the electronic and optical properties of BC2N nanotube are significantly altered on the adsorption of thiazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pozharzskii AF, Soldatenkov AT, Katritzky AR (1997) Heterocycles in life and society. Chichester, Wiley

    Google Scholar 

  2. Sayyad-Alangi SZ, Baei MT, Hashemian S (2013) Adsorption and electronic structure study of thiazole on the (6,0) zigzag single-walled boron phosphide nanotube. J Sul Chem 34:407–420

    Article  CAS  Google Scholar 

  3. Soleymani R, Salehi YM, Yousefzad T, Karimi-Cheshmeh Ali M (2012). Orient J Chem 28:627–638

    Article  CAS  Google Scholar 

  4. Eicher T, Hauptmann S (2003) The chemistry of heterocycles2nd edn. Wiley-VCH, Weinheim, pp 149–184

    Book  Google Scholar 

  5. Ayati A, Emami S, Asadipour A, Shafiee A, Foroumadi A (2015) Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery Eur. J Med Chem 97:699–718

    Article  CAS  Google Scholar 

  6. Lu Y, Li C-M, Wang Z, Ross CR, Chen J, Dalton JT, Li W, Miller DD (2009) Discovery of 4-substituted methoxybenzoyl-aryl-thiazole as novel anticancer agents: synthesis, biological evaluation, and structure− activity relationships. J Med Chem 52:1701–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu W, Zhou J, Qi F, Bensdorf K, Li Z, Zhang H, Qian H, Huang W, Cai X, Cao P, Wellner A, Gust R (2011) Arch. Synthesis and biological activities of 2-amino-thiazole-5-carboxylic acid phenylamide derivatives, Pharm. Chem. Life Sci 344:451–458

    CAS  Google Scholar 

  8. Romagnoli R, Baraldi PG, Brancale A, Ricci A, Hamel E, Bortolozzi R, Basso G, Viola G (2011) Convergent synthesis and biological evaluation of 2-amino-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl thiazoles as microtubule targeting agents. J Med Chem 54:5144–5153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  10. Baei MT, Kanani Y, Joveini Rezaei V, Soltani A (2014) Adsorption phenomena of gas molecules upon Ga-doped BN nanotubes: a DFT study. Appl Surf Sci 295:18–25

    Article  CAS  Google Scholar 

  11. Soltani A, Ghafouri Raz S, Joveini Rezaei V, Dehno Khalaji A, Savar M (2012) Ab initio investigation of Al- and Ga-doped single-walled boron nitride nanotubes as ammonia sensor. Appl Surf Sci 263:619–625

    Article  CAS  Google Scholar 

  12. Duverger E, Gharbi T, Delabrousse E, Picaud F (2014) P Quantum study of boron nitride nanotubes functionalized with anticancer molecules. Phys Chem Chem Phys 16:18425–18432

    Article  CAS  PubMed  Google Scholar 

  13. Darwish AA, Fadlallah MM, Badawi A, Maarouf AA (2016) Adsorption of sugars on Al-and Ga-doped boron nitride surfaces: a computational study. Appl Surf Sci 377:9–16

    Article  CAS  Google Scholar 

  14. Rodriguez Juarez A, Chigo Anota E, Hernandez Cocoletzi H, Riveros AF (2013) Adsorption of chitosan on BN nanotubes: a DFT investigation. Appl Surf Sci 268:259–264

    Article  CAS  Google Scholar 

  15. Najafi Chermahini A, Teimouri A, Farrokhpour H (2014) Theoretical studies of urea adsorption on single wall boron-nitride nanotubes. Appl Surf Sci 320:231–236

    Article  CAS  Google Scholar 

  16. Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49:5081–5084

    Article  CAS  Google Scholar 

  17. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966–967

    Article  CAS  PubMed  Google Scholar 

  18. Deng Z-Y, Zhang J-M, Xu K-W (2015) First-principles study of SO2 molecule adsorption on the pristine and Mn-doped boron nitride nanotubes. Appl Surf Sci 347:485–490

    Article  CAS  Google Scholar 

  19. Soltani A, Baei MT, Tazikeh Lemeski E, Kaveh S, Balakheyli H (2015) A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes. J Phys Chem Solids 86:57–64

    Article  CAS  Google Scholar 

  20. Soltani A, Bezi Javan M (2015) Carbon monoxide interactions with pure and doped B11XN12 (X = Mg, Ge, Ga) nano-clusters: a theoretical study. RSC Adv 5:90621–90631

    Article  CAS  Google Scholar 

  21. Muramatsu Y, Motoyama M, Utsumi W, Gullikson EM, Perera RCC (2002) Theoretically predicted soft x-ray emission and absorption spectra of graphitic-structured BC2N. Adv Quantum Chem 42:353–361

    Article  Google Scholar 

  22. Weng-Sieh Z, Cherrey K, Chopra NG, Blase X, Miyamoto Y, Rubio A et al (1995) Synthesis of BxCyNz nanotubules. Phys Rev B 15:11229–11233

    Article  Google Scholar 

  23. Golberg D, Bando Y, Dorozhkin P, Dong ZC (2004) Synthesis, analysis and electrical property measurements of compounds nanotubes in the ceramic B-C-N system. MRS Bull 29:38–42

    Article  CAS  Google Scholar 

  24. Zhang Y, Gu H, Suenaga K, Iijima S (1997) Heterogeneous growth of BCN nanotubes by laser ablation. Chem Phys Lett 279:264–269

    Article  CAS  Google Scholar 

  25. Blase X, Charlier J-C, De Vita A, Car R (1999) Structural and electronic properties of composite BxCyNz nanotubes and heterojunctions. Appl Phys A Mater Sci Process 68:293–300

    Article  CAS  Google Scholar 

  26. Ma RZ, Golberg D, Bando Y, Sasaki T (2004) Raman spectroscopy of graphite. Phil Trans R Soc Lond 362:2161–2186

    Article  CAS  Google Scholar 

  27. Wang WL, Bai XD, Liu KH, Xu Z, Golberg D, Bando Y et al (2006) Direct synthesis of B-C-N single-walled nanotubes by bias-assisted hot filament chemical vapor deposition. J Am Chem Soc 128:6530–6531

    Article  CAS  PubMed  Google Scholar 

  28. Sivaprakash K, Induja M, Gomathi Priya P (2018) Facile synthesis of metal free non-toxic boron carbon nitride nanosheets with strong photocatalytic behavior for degradation of industrial dyes. Mater Res Bull 100:313–321

    Article  CAS  Google Scholar 

  29. Lei W, Portehault D, Dimova R, Antonietti M (2011) Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors. J Am Chem Soc 133(18):7121–7127

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt TM, Baierle RJ, Piquini P, Fazzio A (2003) Theoretical study of native defects in BN nanotubes. Phys Rev B 67:113407

    Article  CAS  Google Scholar 

  31. Wu J, Han W-Q, Walukiewicz W, Ager J-W, Shan W, Haller EE, Zettl A (2004) Raman spectroscopy and time-resolved photoluminescence of BN and BxCyNz nanotubes. Nano Lett 4:647–650

    Article  CAS  Google Scholar 

  32. Garel J, Zhao C, Popovitz-Biro R, Golberg D, Wang W, Joselevich E (2014) BCN nanotubes as highly sensitive torsional electromechanical transducers. Nano Lett 14:6132–6137

    Article  CAS  PubMed  Google Scholar 

  33. Kouvetakis J, Sasaki T, Shen C, Hagiwara R, Lerner M, Krishnan M, Bartlett N (1989) Novel aspects of graphite intercalation by fluorine and fluorides and new B/C, C/N and B/C/N materials based on the graphite network. Synth Met 34:1

    Article  CAS  Google Scholar 

  34. Yin L-W, Bando Y, Golberg D, Gloter A, Li M-S, Yuan X, Sekiguchi T (2005) Porous BCN nanotubular fibers: growth and spatially resolved cathodoluminescence. J Am Chem Soc 127:16354–16355

    Article  CAS  PubMed  Google Scholar 

  35. Ahmadi Peyghan A, Hadipour NL, Bagheri Z (2013) Effects of Al-doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: DFT studies. J Phys Chem C 117:2427–2432

    Article  CAS  Google Scholar 

  36. Ahmadi Peyghan A, Noei M (2014) Hydrogen fluoride on the pristine, Al and Si doped BC2N nanotubes: a computational study. Comput Mater Sci 82:197–201

    Article  CAS  Google Scholar 

  37. Baei MT, Ahmadi Peyghan A, Bagheri Z (2013) Selective adsorption behavior of BC2N nanotubes toward fluoride and chloride. Solid State Commun 159:8–12

    Article  CAS  Google Scholar 

  38. Anafcheh M, Ghafouri R (2014) 1,3-Dipolar cycloaddition of BC2N nanotubes: a DFT study. Comput Theor Chem 1034:32–37

    Article  CAS  Google Scholar 

  39. Theophil E, Siegfried H (2003) The chemistry of heterocycles structure: reactions, syntheses, and applications2nd edn. Wiley-VCH, Verlag GmbH, and Co., Weinheim

    Google Scholar 

  40. Dawane BS, Konda SG, Kamble VT, Chavan SA, Bhosale RB, Shaikh BM (2009) Multicomponent one-pot synthesis of substituted hantzsch thiazole derivatives under solvent free conditions. E J Chem 6:S358–S362

    Article  CAS  Google Scholar 

  41. Ramos-Inza S, Aydillo C, Sanmartín C, Plano D (2019) Thiazole moiety: an interesting scaffold for developing new antitumoral compounds. https://doi.org/10.5772/intechopen.82741

  42. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N (1993). J Comput Chem 11:1347

    Article  Google Scholar 

  43. Wang Y, Perdew JP (1991) Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys Rev B 44:13298

    Article  CAS  Google Scholar 

  44. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  45. Zhao Y, Schultz NE, Truhlar GD (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Article  PubMed  CAS  Google Scholar 

  46. Xu Z, Meher BR, Eustache D, Wang Y (2014) Insight into the interaction between DNA bases and defective graphenes: covalent or non-covalent. J Mol Graph Model 47:8–17

    Article  CAS  PubMed  Google Scholar 

  47. Bezi Javan M, Soltani A, Azmoodeh Z, Abdolahi N, Gholami N (2016) A DFT study on the interaction between 5-fluorouracil and B12N12 nanocluster. RSC Adv 6:104513–104521

    Article  CAS  Google Scholar 

  48. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  49. O'boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  CAS  PubMed  Google Scholar 

  50. Nour E, Abdel-Sattar A, El-Naggar AM, Abdel-Mottaleb MSA (2017) Novel thiazole derivatives of medicinal potential: synthesis and modeling. J Chem 2017:1–11

    Google Scholar 

  51. Wang Y, Zhou B, Yao X, Huang G, Zhang J, Shao Q (2014) Novel structure and abnormal electronic properties of ultra-thin BC2N nanotubes from first-principles investigation. Chem Phys Lett 616-617:61–66

    Article  CAS  Google Scholar 

  52. Tripathi N, Yamashita M, Uchida T, Akai T (2014) Observations on size confinement effect in B-C-N nanoparticles embedded in mesoporous silica channels. Appl Phys Lett 105:014106

    Article  CAS  Google Scholar 

  53. Issa RM, Khedr AM, Rizk H (2008) 1H NMR, IR and UV/VIS spectroscopic studies of some Schiff bases derived from 2-aminobenzothiazole and 2-amino-3-hydroxypyridine. J Chin Chem Soc 55:875–884

    Article  CAS  Google Scholar 

  54. Taurins A (1957) thiazoles: iii. infrared spectra of methylthiazoles. Can J Chem 35:423–427

    Article  CAS  Google Scholar 

  55. Brez-Pei JP, Gonzzlez-Dsvila M (1988) Vibrational spectra of thiazole-2-carboxylic acid and thiazole-2-carboxylate ion. Spectrosc Lett 21(8):795–807

    Article  Google Scholar 

  56. Varasteh Moradi A, Ahmadi Peyghan A, Hashemian S, Baei MT (2012) Theoretical study of thiazole adsorption on the (6,0) zigzag single-walled boron nitride nanotube. Bull Kor Chem Soc 33:3285–3292

    Article  CAS  Google Scholar 

  57. Soltani A, Azmoodeh Z, Bezi Javand M, Tazikeh Lemeskie E, Karami L (2016) A DFT study of adsorption of glycine onto the surface of BC2N nanotube. Appl Surf Sci 384:230–236

    Article  CAS  Google Scholar 

  58. Nejati K, Vessally E, Kheirollahi Nezhad PD, Mofid H, Bekhradnia A (2017) The electronic response of pristine, Al and Si doped BC2N nanotubes to a cathinone molecule: computational study. J Phys Chem Solids 111:238–244

    Article  CAS  Google Scholar 

  59. Azevedo S, Rosas A, Machado M, Kaschny JR, Chacham H (2013) Effects of deformation on the electronic properties of B–C–N nanotubes. J Solid State Chem 197:254–260

    Article  CAS  Google Scholar 

  60. Abdolahi N, Aghaei M, Soltani A, Azmoodeh Z, Balakheyli H, Heidari F (2018) Adsorption of celecoxib on B12N12 fullerene: spectroscopic and DFT/TD-DFT study. Spectrochim Acta A Mol Biomol Spectrosc 204:348–353

    Article  CAS  PubMed  Google Scholar 

  61. Jeffrey JR, Kobayashi ASR, Ford MJ (2018) Understanding and calibrating density-functional-theory calculations describing the energy and spectroscopy of defect sites in hexagonal boron nitride. J Chem Theory Comput 14(3):1602–1613

    Article  CAS  Google Scholar 

  62. Li H, Logoa O, Tay RY, Tsang SH, Jing L, Zhua M, Leong FN, Teo EHT (2017) Composition-controlled synthesis and tunable optical properties of ternary boron carbonitride nanotubes. RSC Adv 7:12511–12517

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Soltani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolahi, N., Javan, M.B., Katin, K.P. et al. The study of thiazole adsorption upon BC2N nanotube: DFT/TD-DFT investigation. Struct Chem 31, 1959–1967 (2020). https://doi.org/10.1007/s11224-020-01557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01557-1

Keywords

Navigation