Skip to main content
Log in

Behavior of anchor functionalized ZnPc molecules on a graphene nanoflake near membrane cell

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We present a theoretical study of two different zinc phthalocyanine molecules, the 2-aminoethoxy-ZnPc (ZnPc-NH) and ZnPc-Lys molecules, covalently anchored on a graphene nanoflake to increase the stability of the system. By means of density functional theory calculations, we determine the atomic structure of the molecule/graphene nanoflake systems. Then, time-dependent density functional theory calculations show that the optical properties of the two molecules are preserved in water plus salt conditions, which is crucial for photodynamic therapy applications. In the case of the ZnPc-NH molecule, molecular dynamics (MD) simulations show that, whatever the chosen conformation, the adsorbed molecule lies on the substrate, which seems to be more favorable at the approach of the cell membrane. On the contrary, the three long arms of the ZnPc-Lys molecule allow to enhance the solubility and avoid molecule aggregation, but make the membrane approach harder. Finally, a balance between the diffusion of the ZnPc/graphene nanoflake system toward the membrane cell and the solubility, both related to the ligand length, should be found to optimize the PDT efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dhami S, Phillips D (1996) Comparison of the photophysics of an aggregating and non aggregating aluminium phthalocyanine system incorporated into unilamellar vesicles. J Photochem Photobiol A 100:77

    Article  CAS  Google Scholar 

  2. Nombona N, Maduray K, Antunes E, Karsten A, Nyokong T (2012) Synthesis of phthalocyanine conjugates with gold nanoparticles and liposomes for photodynamic therapy. J Photochem Photobiol B 107:35

    Article  CAS  Google Scholar 

  3. Zhang M, Murakami T, Ajima K, Tsuchida K, Sandanayaka AS, Ito O, Iijima S, Yudasaka M (2008) Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc Natl Acad Sci U S A 105:14773

    Article  CAS  Google Scholar 

  4. Mensing JP, Kerdcharoen T, Sriprachuabwong C, Wisitsoraat A, Phokharatkul D, Lomas T, Tuantranont A (2012) Facile preparation of graphene–metal phthalocyanine hybrid material by electrolytic exfoliation. J Mater Chem 22:17094

    Article  CAS  Google Scholar 

  5. Achadu OJ, Uddin I, Nyokong T (2016) Fluorescence behavior of nanoconjugates of graphene quantum dots and zinc phthalocyanines. J Photochem Photobiol A 317:12

    Article  CAS  Google Scholar 

  6. Stergiou A, Pagona G, Tagmatarchis N (2014) Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions. Beilstein J Nanotechnol 5:1580

    Article  Google Scholar 

  7. Milowska KZ, Majewski JA (2013) Stability and electronic structure of covalently functionalized graphene layers. Phys Status Solidi B 250:1474

    Article  CAS  Google Scholar 

  8. Chigo Anota E, Torres Soto A, Cocoletzi GH (2014) Studies of graphene–chitosan interactions and analysis of the bioadsorption of glucose and cholesterol. Appl Nanosci 4:911

    Article  CAS  Google Scholar 

  9. Taquet JP, Frochot C, Manneville V, Barberi-Heyob M (2007) Phthalocyanines covalently bound to biomolecules for a targeted photodynamic therapy. Curr Med Chem 14:1673

    Article  CAS  Google Scholar 

  10. Nyokong T (2007) Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord Chem Rev 251:1707

    Article  CAS  Google Scholar 

  11. Spikes JD (1986) Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors. Photochem Photobiol 43:691

    Article  CAS  Google Scholar 

  12. Allemann E, Brasseur N, Kudrevich SV, LaMadeleine C, van Lier JE (1997) Photodynamic activities and biodistribution of fluorinated zinc phthalocyanine derivatives in the murine EMT-6 tumour model. Int J Cancer 72:289

    Article  CAS  Google Scholar 

  13. Valduga G, Reddi E, Garbisa S, Jori G (1998) Photosensitization of cells with different metastatic potentials by liposome-delivered Zn(II)-phthalocyanine. Int J Cancer 75:412

    Article  CAS  Google Scholar 

  14. de la Torre G, Claessens CG, Torres T (2007) Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chem Commun 2000

  15. Claessens CG, Hahn U, Torres T (2008) Phthalocyanines: from outstanding electronic properties to emerging applications. Chem Rec 8:75

    Article  CAS  Google Scholar 

  16. Reddi E, Zhou C, Biolo R, Menegaldo E, Jori G (1990) Liposomeor LDL-administered Zn(II) phthalocyanine as a photodynamic agent for tumors I. Pharmacokinetic properties and phototherapeutic efficiency. Br J Cancer 61:407

    Article  CAS  Google Scholar 

  17. Duverger E, Picaud F, Stauffer L, Sonnet P (2017) Simulations of a graphene nanoflake as a nanovector to improve ZnPc phototherapy toxicity: from vacuum to cell membrane. ACS Appl Mater Interfaces 9:37554

    Article  CAS  Google Scholar 

  18. Ma X, Sreejith S, Zhao Y (2013) Intercalated disassembly and photodynamic activity of zinc phthalocyanine inside nanochannels of mesoporous silica nanoparticles. ACS Appl Mater Interfaces 5:12860

    Article  CAS  Google Scholar 

  19. Yuchao H, Yichang L, Yayu C, Meiru S, Mingdong H, Jinping X, Lin L, Jinyu L (2018) Probing the interactions of phthalocyanine-based photosensitizers with model phospholipid bilayer by molecular dynamics simulations. J Porphyrins Phthalocyanines 22:764

    Article  Google Scholar 

  20. Li Y, Wang J, Zhang X, Guo W, Li F, Yu M, Kong X, Wu W, Hong Z (2015) Highly water soluble and tumor-targeted photosensitizers for photodynamic therapy. Org Biomol Chem 13:7681

    Article  CAS  Google Scholar 

  21. Samanta PN, Das KK (2015) Structural and electronic properties of covalently functionalized 2 aminoethoxy-metallophthalocyanine–graphene hybridmaterials: a computational study. RSC Adv 5:85730

    Article  CAS  Google Scholar 

  22. Ordejon P, Artacho E, Soler JM (1996) Self-consistent order density-functional calculations for very large systems. Phys Rev B 53:R10441

    Article  CAS  Google Scholar 

  23. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  24. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  26. Scaranto J, Mallia G, Harrison NM (2011) An efficient method for computing the binding energy of an adsorbed molecule within a periodic approach. The application to vinyl fluoride at rutile TiO2(110) surface. Comput Mater Sci 50:2080

    Article  CAS  Google Scholar 

  27. Massara N, Marjaoui A, Stephan R, Hanf M-C, Derivaz M, Dentel D, Hajjar-Garreau S, Mehdaoui A, Diani M, Sonnet P, Pirri C (2019) Experimental molecular adsorption: electronic buffer effect of germanene on Al(1 1 1). 2D Mater 6:035016

    Article  CAS  Google Scholar 

  28. Stephan R, Derivaz M, Hanf M-C, Dentel D, Massara N, Mehdaoui A, Sonnet P, Pirri C (2017) Tip-induced switch of germanene atomic structure. J Phys Chem Lett 8:4587

    Article  CAS  Google Scholar 

  29. Baris B, Luzet V, Duverger E, Sonnet P, Palmino F, Cherioux F (2011) Robust and open tailored supramolecular networks controlled by the template effect of a silicon surface. Angew Chem Int Ed 50:4094

    Article  CAS  Google Scholar 

  30. Andrade X, Strubbe DA, De Giovannini U, Larsen AH, Oliveira MJT, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete MJ, Stella L, Nogueira F, Aspuru-Guzik A, Castro A, Marques MAL, Rubio A (2015) Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Phys Chem Chem Phys 17:31371

    Article  CAS  Google Scholar 

  31. Castro A, Appel H, Oliveira M, Rozzi CA, Andrade X, Lorenzen F, Marques MAL, Gross EKU, Rubio A (2006) octopus: a tool for the application of time-dependent density functional theory. Phys Stat Sol B 243:2465

    Article  CAS  Google Scholar 

  32. Marques MAL, Castro A, Bertsch GF, Rubio A (2003) Octopus: a first-principles tool for excited electron-ion dynamics. Comput Phys Commun 151:60

    Article  CAS  Google Scholar 

  33. Mayne CG, Saam J, Schulten K, Tajkhorshid E, Gumbart JC (2013) Rapid parameterization of small molecules using the Force Field Toolkit. J Comput Chem 34:2757

    Article  CAS  Google Scholar 

  34. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a Web-based graphical user interface for CHARMM. J Comput Chem 29:1859

    Article  CAS  Google Scholar 

  35. Best RB, Zhu X, Shim J, Lopes P, Mittal J, Feig M, MacKerell Jr AD (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8:3257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

In this present work, calculations were performed with the supercomputer regional facility Mesocenters of the Universities of Franche-Comté and Strasbourg. This work was also performed using HPC resources from GENCI-IDRIS (Grant 2017-A0010810075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Sonnet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picaud, F., Duverger, E., Stauffer, L. et al. Behavior of anchor functionalized ZnPc molecules on a graphene nanoflake near membrane cell. Struct Chem 31, 1935–1943 (2020). https://doi.org/10.1007/s11224-020-01551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01551-7

Keywords

Navigation