Skip to main content
Log in

Computational study of homogenous gold-catalyzed oxime–oxime rearrangement: Balci–Güven rearrangement

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Treatment of N-propargylated pyrrole aldoxime derivatives with gold-based catalyst unexpectedly resulted in oxime–oxime rearrangement, which led to ketoximes. This type of reorganization has not been previously observed in the literature and represents a new rearrangement called the Balci–Güven rearrangement. Based on the experimental findings, the proposed mechanistic pathway was studied. Density functional theory calculations employing wb97xd, m062x, and m06 hybrid functional methods were used to locate and discuss the energetics of the intermediates and the transition states of this rearrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 2
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Beckmann E (1886). Chem Ber 89:988–993

    Google Scholar 

  2. Blatt AH (1933). Chem Rev 12:215–260

    CAS  Google Scholar 

  3. Jones B (1944). Chem Rev 35:335–350

    CAS  Google Scholar 

  4. Donaruma LG, Heldt WZ (1960). Org React 11:1–59

    CAS  Google Scholar 

  5. Jochims JC, Hehl S, Herzberger S (1990). Synthesis 12:1128–1133

    Google Scholar 

  6. Guven S, Ozer MS, Kaya S, Menges N, Balci M (2015). Org Lett 17:2660–2663

    CAS  PubMed  Google Scholar 

  7. Suarez AG, Gasperini D, Vummaleti SVC, Poater A, Cavallo L, Nolan SP (2014). ACS Catal 4:2701–2705

    Google Scholar 

  8. Sherry BD, Toste FD (2004). J Am Chem Soc 126:15978–15978

    CAS  PubMed  Google Scholar 

  9. Krafft ME, Hallal KM, Vidhani DV, Cran JW (2011). Org Biomol Chem 9:7535–7539

    CAS  PubMed  Google Scholar 

  10. Shi M, Wu L, Lu JM (2008). J Org Chem 73:8344–8347

    CAS  PubMed  Google Scholar 

  11. Lu B, Shi M (2010). Chem Eur J 16:10975–10979

    CAS  PubMed  Google Scholar 

  12. Lopez SS, Engel DA, Dudley GB (2007). Synlett 6:949–953

    Google Scholar 

  13. Pennell MN, Turner PG, Sheppard TD (2012). Chem Eur J 18:4748–4758

    CAS  PubMed  Google Scholar 

  14. Ramon RS, Gaillard S, Slawin AMZ, Porta A, Alfonso AD, Zanoni G, Nolan SP (2010). Organometallics 29:3665–3668

    CAS  Google Scholar 

  15. Felix RJ, Weber D, Gutierrez O, Tantillo DJ, Gagné MR (2012). Nat Chem 5:405–409

    Google Scholar 

  16. Bae HJ, Jeong W, Lee JH, Rhee YH (2011). Chem Eur J 17:1433–1436

    CAS  PubMed  Google Scholar 

  17. Nunez EJ, Claverie CK, Bour C, Cardenas DJ, Echavarren AM (2008). Angew Chem Int Ed 47:7892–7895

    Google Scholar 

  18. Tang J, Bhunia S, Sohel SA, Lin M, Liao H, Datta S, Das A, Liu R (2007). J Am Chem Soc 129:15677–15683

    CAS  PubMed  Google Scholar 

  19. Hohenberg P, Kohn W (1964). Phys Rev 136:B864–B871

    Google Scholar 

  20. Kohn W, Sham L (1965). Phys Rev 140:A1133–A1138

    Google Scholar 

  21. Parr RG, Yang W (1995). Ann Rev Phys Chem 46:701–728

    CAS  Google Scholar 

  22. Kohn W, Becke AD, Parr RG (1996). J Phys Chem 100:12974–12980

    CAS  Google Scholar 

  23. Chai JD, Gordon MH (2009). J Chem Phys 131:174105–174118

    PubMed  Google Scholar 

  24. Escrich CR, Davis RL, Jiang H, Stiller J, Johansen TK, Jørgensen KA (2013). Chem Eur J 19:2932–2936

    Google Scholar 

  25. Silla JM, Duarte CJ, Rittner R, Freitas MP (2013). RSC Adv 3:25765–25768

    CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2008). Theor Chem Accounts 120:215–241

    CAS  Google Scholar 

  27. Hohenstein EG, Samuel ST, Sherrill CD (2008). J Chem Theory Comput 4:1996–2000

    CAS  PubMed  Google Scholar 

  28. Wadt WR, Hay PJ (1985). J Chem Phys 82:299–310

    Google Scholar 

  29. Fukui K (1981). Acc Chem Res 14:363–368

    CAS  Google Scholar 

  30. Miertuš S, Scrocco E, Tomasi J (1981). Chem Phys 55:117–129

    Google Scholar 

  31. Gaussian 09, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ Gaussian, Inc., Wallingford CT

  32. Rajaei I, Mirsattari SN (2018). J Mol Struc 1163:236–251

    CAS  Google Scholar 

  33. Najafi M, Morsali A, Bozorgmehr MR (2019). Struct Chem 30:715–726

    CAS  Google Scholar 

  34. Morgan KM, Gronert S (2000). J Org Chem 65:1461–1466

    CAS  PubMed  Google Scholar 

  35. Raspoet G, Vanquickenborne LG, Nguyen MT (1997). J Am Chem Soc 119:2552–2562

    Google Scholar 

  36. Ozen SA, Erdem SS, Aviyente V (1998). Struct Chem 9:15–25

    CAS  Google Scholar 

  37. Cramer CJ, Truhlar DG (1991). J Am Chem Soc 113:8305–8311

    CAS  Google Scholar 

  38. Wiest O, Houk KN (1994). J Org Chem 59:7582–7584

    CAS  Google Scholar 

  39. Wong MW, Frisch MJ, Wiberg KB (1991). J Am Chem Soc 113:4776–4782

    CAS  Google Scholar 

  40. Koreeda M, Luengo JI (1985). J Am Chem Soc 107:5572–5573

    CAS  Google Scholar 

  41. Welch JT, Samartino JS (1985). J Org Chem 50:3663–3665

    CAS  Google Scholar 

  42. Ireland RE, Mueller RH, Willard AK (1976). J Am Chem Soc 98:2868–2877

    CAS  Google Scholar 

  43. Denmark SE, Harmata MA (1982). J Am Chem Soc 104:4972–4974

    CAS  Google Scholar 

  44. Curran DP, Suh YG (1984). J Am Chem Soc 106:5002–5004

    CAS  Google Scholar 

  45. Coates RM, Rogers BD, Hobbs SJ, Peck DR, Curran DP (1987). J Am Chem Soc 109:1160–1170

    CAS  Google Scholar 

  46. Wilcox CS, Babston RE (1986). J Am Chem Soc 108:6636–6642

    CAS  Google Scholar 

  47. Westheimer FH (1961). Chem Rev 61:265–273

    CAS  Google Scholar 

  48. Bell RP (1974). Chem Soc Rev 4:513–544

    Google Scholar 

  49. Bockman TM, Hubig SM, Kochi JK (1998). J Am Chem Soc 120:2826–2830

    CAS  Google Scholar 

  50. Hua W, Sassi A, Goeppert A, Taulelle F, Lorentz C, Sommer J (2001). J Catal 204:460–465

    CAS  Google Scholar 

Download references

Acknowledgments

I thank Professor Viktorya Aviyente (Boğaziçi University) for her help with Gaussian. Thanks are also due to the Scientific and Technological Research Council of Turkey (TUBITAK) for the use of its ULAKBIM/TRUBA high performance and grid computing center.

Funding

Financial support from the Scientific Research Department (BAP, Project No. FEF.19001.18.004) of Hitit University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Basceken.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 874 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basceken, S. Computational study of homogenous gold-catalyzed oxime–oxime rearrangement: Balci–Güven rearrangement. Struct Chem 31, 1765–1776 (2020). https://doi.org/10.1007/s11224-020-01531-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01531-x

Keywords

Navigation