Skip to main content
Log in

3D-QSAR and Pharmacophore modeling of 3,5-disubstituted indole derivatives as Pim kinase inhibitors

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Indole derivatives are reported in the literature for their excellent kinase inhibition activity, so understanding their structural requirement is important. For their further development, ligand-based pharmacophore, atom and field-based 3D-QSAR, and ADME studies of the 3, 5-disubstituted indole derivatives were carried out. Ligand-based pharmacophore, atom and field-based 3D-QSAR models were developed using the Phase module of Schrodinger suite. In silico ADME and drug-likeness properties were studied using the Quikprop module of Schrodinger suite. Five-point pharmacophore model (DHRRR _1) with one hydrogen bond donor (D), one hydrophobic site (H), and three aromatic rings (R) was developed. 3D-QSAR models yielded with good statistical results as the models were characterized by PLS factors 4 and validated by parameters like R2, R2 CV, Stability, F-value, P value, RMSE, Q2, and Pearson-r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.A. Domen J, Von Lindern M, Hermans A, Breuer M, Grosveld G (1987) Comparison of the human and mouse PIM-1 cDNAs: nucleotide sequence and immunological identification of the in vitro synthesized PIM-1 protein. Oncogene Research 1:103–112

    Google Scholar 

  2. C.C. Meeker TC, Nagarajan L, Ar-Rushdi A, Rovera G, Huebner K (1987) Characterization of the human PIM-1 gene: a putative proto-oncogene coding for a tissue specific member of the protein kinase family. Oncogene Research 1:87–101

    Google Scholar 

  3. Nawijn MC, Alendar A, Berns A (2011) For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer 11:23–34. https://doi.org/10.1038/nrc2986

    Article  CAS  PubMed  Google Scholar 

  4. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J (2010) Pim serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica. 95:1004–1015. https://doi.org/10.3324/haematol.2009.017079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bachmann M, Möröy T (2005) The serine/threonine kinase Pim-1. Int J Biochem Cell Biol 37:726–730. https://doi.org/10.1016/j.biocel.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  6. Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C, Kronkaitis A, Li J, White A, Mische S, Farmer B (2005) Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem 280:6130–6137. https://doi.org/10.1074/jbc.M409123200

    Article  CAS  PubMed  Google Scholar 

  7. van der Lugt NM, Domen J, Verhoeven E, Linders K, van der Gulden H, Allen J, Berns A (1995) Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2. EMBO J 14:2536–2544. https://doi.org/10.1002/j.1460-2075.1995.tb07251.x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Davuluri RV, Grosse I, Zhang MQ (2001) Computational identification of promoters and first exons in the human genome. Nat Genet 29:412–417. https://doi.org/10.1038/ng780

    Article  CAS  PubMed  Google Scholar 

  9. Martín-Sánchez E, Odqvist L, Rodríguez-Pinilla SM, Sá M, Roncador G, Domínguez-González B, Blanco-Aparicio C, Collazo AMG, Cantalapiedra EGL, Ndez JPF, Del Olmo SC, Pisonero H, Madureira R, Almaraz C, Mollejo M, Alves FJ, Menárguez J, Gonzál F, Rodríguez-Peralto JL, Ortiz-Romero PL, Real FX, García JF, Bischoff JR, Piris MA (2014) PIM kinases as potential therapeutic targets in a subset of peripheral T cell lymphoma cases. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0112148

  10. Xinning Zhang Z-ZL, Song M, Kundu JK, Lee M-H (2018) PIM kinase as an executional target in Cancer. Journal of Cancer Prevention 23:109–116

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rathi AK, Syed R, Singh V, Shin H-S, Patel RV (2016) Kinase inhibitor Indole derivatives as anticancer agents: a patent review. Recent Patents on Anti-Cancer Drug Discovery 12:55–72. https://doi.org/10.2174/1574892811666161003112119

    Article  CAS  Google Scholar 

  12. More KN, Jang HW, Hong VS, Lee J (2014) Pim kinase inhibitory and antiproliferative activity of a novel series of meridianin C derivatives. Bioorganic and Medicinal Chemistry Letters. 24:2424–2428. https://doi.org/10.1016/j.bmcl.2014.04.035

    Article  CAS  PubMed  Google Scholar 

  13. Lee J, More KN, Yang SA, Hong VS (2014) 3,5-bis(aminopyrimidinyl)indole derivatives: synthesis and evaluation of pim kinase inhibitory activities. Bull Kor Chem Soc 35:2123–2129. https://doi.org/10.5012/bkcs.2014.35.7.2123

    Article  CAS  Google Scholar 

  14. Dadashpour S, Emami S (2018) Indole in the target-based design of anticancer agents: a versatile scaffold with diverse mechanisms. Eur J Med Chem 150:9–29. https://doi.org/10.1016/j.ejmech.2018.02.065

    Article  CAS  PubMed  Google Scholar 

  15. More KN, Hong VS, Lee A, Park J, Kim S, Lee J (2018) Discovery and evaluation of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Bioorganic and Medicinal Chemistry Letters 28:2513–2517. https://doi.org/10.1016/j.bmcl.2018.05.054

    Article  CAS  PubMed  Google Scholar 

  16. Asati V, Mahapatra DK, Bharti SK (2019) PIM kinase inhibitors: structural and pharmacological perspectives. Eur J Med Chem 172:95–108. https://doi.org/10.1016/j.ejmech.2019.03.050

    Article  CAS  PubMed  Google Scholar 

  17. Wan Y, Li Y, Yan C, Yan M, Tang Z (2019) Indole: a privileged scaffold for the design of anti-cancer agents. Eur J Med Chem 183:111691. https://doi.org/10.1016/j.ejmech.2019.111691

    Article  CAS  PubMed  Google Scholar 

  18. Barberis C, Pribish J, Tserlin E, Gross A, Czekaj M, Barragué M, Erdman P, Maniar S, Jiang J, Fire L, Patel V, Hebert A, Levit M, Wang A, Sun F, Huang SMA (2019) Discovery of N-substituted 7-azaindoles as pan-PIM kinases inhibitors – Lead optimization – part III. Bioorganic and Medicinal Chemistry Letters. 29:491–495. https://doi.org/10.1016/j.bmcl.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  19. Dixon RA, Smondyrev SL, Knoll AM, Rao EH, Shaw SN, Friesner DE (2006) PHASE: A New Engine for Pharmacophore Perception, 3D QSAR Model Development, and 3D Database Screening. 1. Methodology and Preliminary Results. Journal of Computer-Aided Molecular Design - Springer 20:647–671

    Article  CAS  Google Scholar 

  20. Dixon SN, Smondyrev SL, Rao AM (2006) PHASE: A Novel Approach to Pharmacophore Modeling and 3D Database Searching. Chemical Biology & Drug Design 67:370–372

    Article  CAS  Google Scholar 

  21. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  22. Veerasamy R, Rajak H, Jain A, Sivadasan S, Varghese CP, Agrawal RK (2011) Validation of QSAR models - strategies and importance. International Journal of Drug Design and Disocovery 2:511–519

    CAS  Google Scholar 

  23. Zambre VP, Hambarde VA, Petkar NN, Patel CN, Sawant SD (2015) Structural investigations by in silico modeling for designing NR2B subunit selective NMDA receptor antagonists. RSC Adv 5:23922–23940. https://doi.org/10.1039/C5RA01098E

    Article  CAS  Google Scholar 

  24. Ganjoo A, Prabhakar C (2019) In silico structural anatomization of spleen tyrosine kinase inhibitors: Pharmacophore modeling, 3D QSAR analysis and molecular docking studies. J Mol Struct 1189:102–111. https://doi.org/10.1016/j.molstruc.2019.04.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol A. Kulkarni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varpe, B.D., Jadhav, S.B., Chatale, B.C. et al. 3D-QSAR and Pharmacophore modeling of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Struct Chem 31, 1675–1690 (2020). https://doi.org/10.1007/s11224-020-01503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01503-1

Keywords

Navigation