Skip to main content
Log in

Migrating simulation of novel high-energy SMX-based propellants based on molecular dynamics

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Three 2,3-bis(hydroxymethyl)-2,3-dinitro-1,4-butanediol tetranitrate (SMX)–based propellants were firstly reported, then the specific impulses of SMX-based propellants were calculated by the Energy Calculation Star program. Meanwhile, the migration property of the plasticizers and SMX was investigated by molecular dynamic method, and the main results as follows: the theoretical specific impulses of three SMX-based propellants all overpass 280 s, which suggests that they have the potential to be high-energy propellants. The migrating property of plasticizers in SMX-based propellants and ethylene propylene diene monomer (EPDM) insulation all decrease in the order Bu-NENA> BTTN> TMETN. Meanwhile, the plasticizers much easier migrate in EPDM insulation than in SMX-based propellants, and TMETN is significantly more difficult to migrate than the other. The glass transition temperatures (Tg) of GAP/Bu-NENA/Al/SMX, GAP/BTTN/Al/SMX, and GAP/TMETN/Al/SMX systems are 282.3 K, 278.1 K, and 287.6 K, respectively. Due to lower Tg of EPDM, the EPDM/plasticizer systems have no obvious glass transition between 233 and 323 K. The SMX is almost more difficult to migrate than plasticizers in SMX-based propellants while temperature is above 273 K, whereas it is contrary under 273 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lempert D, Nechiporenko G, Manelis G (2011) Energetic performances of solid composite propellants[J]. Cent Eur J Energetic Mater 8(1):25–38

    CAS  Google Scholar 

  2. Gottlieb L, Bar S (2003) Migration of plasticizer between bonded propellant interfaces[J]. Propell Explos Pyrot: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials 28(1):12–17

    Article  CAS  Google Scholar 

  3. Li S, Liu Y, Tuo X et al (2008) Mesoscale dynamic simulation on phase separation between plasticizer and binder in NEPE propellants[J]. Polymer 49(11):2775–2780

    Article  CAS  Google Scholar 

  4. Grythe KF, Hansen FK (2007) Diffusion rates and the role of diffusion in solid propellant rocket motor adhesion[J]. J Appl Polym Sci 103(3):1529–1538

    Article  CAS  Google Scholar 

  5. Chavez DE, Hiskey MA, Naud DL et al (2008) Synthesis of an energetic nitrate ester[J]. Angew Chem 120(43):8431–8433

    Article  Google Scholar 

  6. Fischer N, Fischer D, Klapötke TM et al (2012) Pushing the limits of energetic materials-the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate[J]. J Mater Chem 22(38):20418–20422

    Article  CAS  Google Scholar 

  7. Fuqiang B, Junliang Y, Bozhou W et al (2011) Synthesis, crystal structure and properties of 2, 3-bis (hydroxymethyl)-2,3-dinitro-1,4-butanedioltetranitrate[J]. Chin J Org Chem 31(11):1893–1900

    Google Scholar 

  8. Reese DA, Son SF, Groven LJ (2014) Composite propellant based on a new nitrate ester[J]. Propellants Explos Pyrotech 39(5):684–688

    Article  CAS  Google Scholar 

  9. HUO B, HE J-x, REN X-t, CAO Y-l (2017) Synthesis, crystal morphology control of SEM and its compatibility of HTPB propellant. Chin J of Energetic Mater 25(4):348–352

    Google Scholar 

  10. Sizov VA, Pleshakov DV, Asachenko AF et al (2018) Synthesis and study of the thermal and ballistic properties of SMX [J]. Cent Eur J Energetic Mater 15(1):30–46

    Article  CAS  Google Scholar 

  11. Huang Z, Nie H, Zhang Y et al (2012) Migration kinetics and mechanisms of plasticizers, stabilizers at interfaces of NEPE propellant/HTPB liner/EDPM insulation[J]. J Hazard Mater 229:251–257

    Article  CAS  PubMed  Google Scholar 

  12. Reese DA, Groven LJ, Son SF (2014) Formulation and characterization of a new nitroglycerin-free double base propellant[J]. Propellants Explos Pyrotech 39(2):205–210

    Article  CAS  Google Scholar 

  13. Li H-X, Qiang H-F, Li X-Q et al (2012) Measurement of diffusion coefficient of plasticizer in HTPB propellant [J]. J Solid Rocket Technol 35(3):387–390

    CAS  Google Scholar 

  14. Bei Q, Pan Q, Tang Q-f et al (2018) Molecular dynamics simulation and experimental study on migration of nitric Ester in NEPE propellant[J]. Chin J Energetic Mater 41(3):278–284

    Google Scholar 

  15. Material Studio 8.0[C] //Acceryls Inc.: San Diego, 2014

  16. Ma X, Zhao F, Ji G et al (2008) Computational study of structure and performance of four constituents HMX-based composite material[J]. J Mol Struct THEOCHEM 851(1–3):22–29

    Article  CAS  Google Scholar 

  17. Lu Y, Shu Y, Liu N et al (2017) Theoretical simulations on the glass transition temperatures and mechanical properties of modified glycidyl azide polymer[J]. Comput Mater Sci 139:132–139

    Article  CAS  Google Scholar 

  18. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale[J]. Ann Phys 369(3):253–287

    Article  Google Scholar 

  19. Karasawa N, Goddard III WA (1989) Acceleration of convergence for lattice sums[J]. J Phys Chem 93(21):7320–7327

    Article  CAS  Google Scholar 

  20. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature[J]. J Chem Phys 72(4):2384–2393

    Article  CAS  Google Scholar 

  21. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath[J]. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  22. Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[J]. Phys Rev 159(1):98

    Article  CAS  Google Scholar 

  23. Liu QL, Huang Y (2006) Transport behavior of oxygen and nitrogen through organasilicon-containing polystyrenes by molecular simulation[J]. J Phys Chem B 110(35):17375–17382

    Article  CAS  PubMed  Google Scholar 

  24. Haesslin HW (1985) Dimethylsiloxane-ethylene oxide block copolymers, 2. Preliminary results on dilute solution properties[J]. Die Makromolekulare Chemie Banner 186(2):357–366

    Article  CAS  Google Scholar 

  25. YU Z-f, FU X-l, YU H-j et al (2015) Mesoscopic molecular simulation of migration of NG and BTTN in polyurethane [J]. Chin J Energetic Mater 23(9):858–864

    Google Scholar 

  26. Li M, Zhao FQ, Xu SY et al (2013) Comparison of three kinds of energy calculation programs in formulation design of solid propellants[J]. Chin J Explos Propellants 36(3):73–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-qiang Pang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liu, N., Li, Jq. et al. Migrating simulation of novel high-energy SMX-based propellants based on molecular dynamics. Struct Chem 30, 1233–1241 (2019). https://doi.org/10.1007/s11224-019-1282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-1282-x

Keywords

Navigation