Skip to main content
Log in

New crystal structures of fluorinated α-aminophosphonic acid analogues of phenylglycine

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

An Author Correction to this article was published on 27 February 2020

This article has been updated

Abstract

The four novel phosphonic acid analogues of phenylglycine with various substituents in phenyl ring (mostly fluorine atoms) have been synthesized by using procedure of amidoalkylation of phosphorus trichloride with aromatic aldehydes and acetamide. The NMR, ESI-MS spectroscopy, and single-crystal X-Ray diffraction methods were used to characterize unusual structures: the amino-(4-trifluoromethylbenzyl)-(1), amino-(3,4-difluorobenzyl)-(2), amino-(2,4,6-trifluorobenzyl)-(3), and amino-(2-fluoro-4-hydroxybenzyl)-(4) phosphonic acids. Since the α-aminophosphonates have a potential for biological activity and could be used as building blocks in medicinal chemistry, it is important to know their detail crystal structures and properties which, in turn, may extend the knowledge on their interaction with physiologic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 27 February 2020

    Corrections are needed to the original version of this article.

References

  1. Mastalerz P (1959). Arch Immun Ter Dośw 2:201–210

    Google Scholar 

  2. Mastalerz P (1960). Chem Abstr 54:6843

    Google Scholar 

  3. Mucha A, Kafarski P, Berlicki Ł (2011) Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J Med Chem 54:5955–5980

    Article  CAS  Google Scholar 

  4. Mucha A (2012) Synthesis and Modifications of Phosphinic Dipeptide Analogues. Molecules 17:13530–13,568

    Article  CAS  Google Scholar 

  5. Węglarz-Tomczak E, Vassiliou S, Mucha A (2016) Discovery of potent and selective inhibitors of human aminopeptidases ERAP1 and ERAP2 by screening libraries of phosphorus-containing amino acid and dipeptide analogues. Bioorg Med Chem Lett 26:4122–4126

    Article  Google Scholar 

  6. Fang YL, Wu ZL, Xiao MW, Tang YT, Li KM, Ye J, Xiang JN, Hu AX (2016) One-Pot Three-Component Synthesis of Novel Diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(arylamino)methyl)phosphonate as Potential Anticancer Agents. Int J Mol Sci 17:653–667

    Article  Google Scholar 

  7. Bhattacharya AK, Raut DS, Rana KC, Polanki IK, Khan MS, Iram S (2013) Diversity-oriented synthesis of α-aminophosphonates: a new class of potential anticancer agents. Eur J Med Chem 66:146–152

    Article  CAS  Google Scholar 

  8. Dake SA, Raut DS, Kharat KR, Mhaske RS, Deshmukh SU, Pawar RP (2011) Ionic liquid promoted synthesis, antibacterial and in vitro antiproliferative activity of novel α-aminophosphonate derivatives. Bioorg Med Chem Lett 21:2527–2532

    Article  CAS  Google Scholar 

  9. Hellal A, Chafaa S, Chafai N, Touafri L (2017) Synthesis, antibacterial screening and DFT studies of series of α-amino-phosphonates derivatives from aminophenols. J Mol Struct 1134:217–225

    Article  CAS  Google Scholar 

  10. Lan X, Xie D, Yin L, Wang Z, Chen J, Zhang A, Song B, Hu D (2017) Novel α,β-unsaturated amide derivatives bearing α-amino phosphonate moiety as potential antiviral agents. Bioorg Med Chem Lett 27:4270–4273

    Article  CAS  Google Scholar 

  11. Romero-Estudillo I, Viveros-Ceballos JL, Cazares-Carreño O, González-Morales A, Flores de Jesús B, López-Castillo M, Razo-Hernández RS, Castañeda-Corral G, Ordóñez M (2018) Synthesis of new α-aminophosphonates: Evaluation as anti-inflammatory agents and QSAR studies. Bioorg Med Chem 15:2376–2386

    Google Scholar 

  12. Qin Y, Xing R, Liu S, Yu H, Li K, Hu L, Li P (2014) Synthesis and antifungal properties of (4-tolyloxy)-pyrimidyl-α-aminophosphonates chitosan derivatives. Int J Biol Macromol 63:83–91

    Article  CAS  Google Scholar 

  13. Kafarski P, Lejczak B (2001) Aminophosphonic Acids of Potential Medical Importance. Curr Med Chem Anticancer Agents 1:301–312

    Article  CAS  Google Scholar 

  14. Lejczak B, Kafarski P (2009) Biological Activity of Aminophosphonic Acids and Their Short Peptides. Top Heterocycl Chem 20:31–63

    Article  CAS  Google Scholar 

  15. Wang J, Sanchez-Rosello M, Acena C, del Pozo JL, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem Rev 114:2432–2506

    Article  CAS  Google Scholar 

  16. O’Hagan D, Rzepa HS (1997) Some influences of fluorine in bioorganic chemistry. Chem Commun 7:645–652

    Article  Google Scholar 

  17. LeVine H (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284

    Article  CAS  Google Scholar 

  18. Lemal DM (2004) Perspective on Fluorocarbon Chemistry. J Org Chem 69:1–11

    Article  CAS  Google Scholar 

  19. Ojima I (2009) Fluorine in Medicinal Chemistry and Chemical Biology, New York

  20. Minks C, Huber R, Moroder L, Budisa N (2000) Noninvasive tracing of recombinant proteins with “fluorophenylalanine-fingers”. Anal Biochem 284:29–34

    Article  CAS  Google Scholar 

  21. Wanat W, Talma M, Hurek J, Pawełczak M, Kafarski P (2018) Substituted phosphonic analogues of phenylglycine as inhibitors of phenylalanine ammonia lyase from potatoes. Biochimie 115:119–127

    Article  Google Scholar 

  22. Oleksyszyn J, Soroka M, Rachoń J (1978) Phosphorus analogs of amino-acids and pepetides. 2. Phosphoanalogs and phosphinanalogs of cycloleucin. Chimia 32:253–255

    CAS  Google Scholar 

  23. Oleksyszyn J, Tyka R, Mastalerz P (1978) Direct synthesis of 1- aminoalkanephosphonic and 1- aminoalkanephosphinic acids from phosphorus trichloride or dichlorophosphines. Synthesis:479–480

  24. Soroka M (1989) Comments on the synthesis of aminomethylphosphonic acid. Synthesis:547–548

  25. CrysAlis CCD (2002) Oxford Diffraction Ltd.: Abingdon, England, CrysAlis RED (2002) Oxford Diffraction Ltd.: Abingdon, England

  26. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  27. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C 71:3–8

    Article  Google Scholar 

  28. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) New Features for the Visualization and Investigation of Crystal Structures. J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  29. Sawka-Dobrowolska W (1985) Structure of α-(Isopropylamino)salicylphosphonic Acid Hemihydrate, C10H16NO4P.0.5H2O. Acta Crystallogr Sect C 41:84–86

    Article  Google Scholar 

  30. Sawka-Dobrowolska W (1988) Structure of (R), 1-[(R)-1-Phenylethylamino]benzylphosphonic Acid Sesquihydrate. Acta Crystallogr Sect C 44:1624–1627

    Article  Google Scholar 

  31. Nazir H, Yilmaz H, Tahir MN, Ülkü D (1999) Synthesis of Substituted α-N-(2-Hydroxyethyl)- Aminomethylphosphonic Acid Monoethylester Derivatives. Synth React In Met-Org Chem 29(10):1821–1828

    Article  CAS  Google Scholar 

  32. Sowa M, Ślepokura K, Goldeman W, Duczmal M, Wojciechowska A, Matczak-Jon E (2013) Structural characterization of pyridin-2-, −3-, and − 4-yl functionalized (iminodimethanediyl)bis(phosphonic) acids: Insight into the cobalt(II) and copper(II) complexes of pyridin-2-yl derivative. Polyhedron 50:398–409

    Article  CAS  Google Scholar 

  33. Hua F, Meijuan F, Xiaoxia L, Guo T, Yufen Z (2007) Syntheses, Characterizations, and Crystal Structures of Phosphonopeptides. Heteroat Chem 18:9–15

    Article  Google Scholar 

  34. Naydenova ED, Todorov PT, Troev KD (2010) Recent synthesis of aminophosphonic acids as potential biological importance. Amino Acids 38:23–30

    Article  CAS  Google Scholar 

  35. Visnjevac A, Tusek-Bozic L (2004) Two types of monoethyl a-anilino-benzylphosphonates: a zwitterion and a molecular compound. Acta Crystallogr Sect C 60:434–437

    Article  Google Scholar 

  36. Tong F, Sun ZG, Chen K, Zhu YY, Wang WN, Jiao CQ, Wang CL, Li C (2011) Hydrothermal synthesis, structures, and luminescent properties of zinc(II) and cadmium(II) phosphonates with a 3D framework structure using terephthalate as second linkers. Dalton Trans 40:5059–5065

    Article  CAS  Google Scholar 

  37. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. Cryst Eng Comm 4:378–392

    Article  CAS  Google Scholar 

  38. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) CrystalExplorer (Version 3.1). University of Western Australia

Download references

Funding

This work was supported by Narodowe Centrum Nauki, grant number 2017/26/M/ST5/00437.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weronika Wanat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(RAR 582 kb)

ESM 2

(RAR 936 kb)

ESM 3

(RAR 6907 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanat, W., Dziuk, B. & Kafarski, P. New crystal structures of fluorinated α-aminophosphonic acid analogues of phenylglycine. Struct Chem 31, 1197–1209 (2020). https://doi.org/10.1007/s11224-019-01483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01483-x

Keywords

Navigation