Skip to main content
Log in

Enhanced nonlinear optical properties of porphyrin with an extended π-conjugated bridge

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, a series of molecules with an extended π-conjugated bridge have been theoretically designed based on porphyrin, where -(CH=CH)n- (n = 1–4, 8, 12) chain is served as an extended π-conjugated bridge. It is found that all molecules exhibit large energy gaps in the range of 3.484–4.151 eV for porphyrin-(CH=CH)n-NH2, and 3.624–4.250 for porphyrin-(CH=CH)n-NO2. The maximum absorption wavelengths of all molecules show a red shift trend with increasing -(CH=CH)n- length, which leads to small transition energy. It is observed that long chain brings these molecules the large first hyperpolarizability, which are 1.04 × 105 au for porphyrin-(CH=CH)12-NH2, 1.26×105 au for porphyrin-(CH=CH)12-NO2. Moreover, compared with -(CH=CH)n-NH2 with the same chain length, -(CH=CH)n-NO2 chain can achieve larger nonlinear optical response. It is hoped that the research in this paper can provide a new strategy for the experimental design of nonlinear optical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bessho T, Zakeeruddin SM, Yeh CY, Diau EWG, Grätzel M (2010). Angew Chem Int Ed 49:6646–6649

    Article  CAS  Google Scholar 

  2. Reddy BK, Basavarajappa A, Ambhore MD, Anand VG (2017). Chem Rev 117:3420–3443

    Article  CAS  PubMed  Google Scholar 

  3. Zhang A, Li C, Yang F, Zhang J, Wang Z, Wei Z, Li W (2017). Angew Chem Int Ed 56:1–6

    Article  CAS  Google Scholar 

  4. Zhu M, Dong Y, Du Y, Mou Z, Liu J, Yang P, Wang X (2012). Chem Eur J 18:4367–4374

    Article  CAS  PubMed  Google Scholar 

  5. Shin JY, Kim KS, Yoon MC, Lim JM, Yoon ZS, Osuka A, Kim D (2010). Chem Soc Rev 39:2751–2767

    Article  CAS  PubMed  Google Scholar 

  6. Imahorii H, Umeyama T, Kurotobi K, Takano Y (2012). Chem Commun 48:4032–4045

    Article  CAS  Google Scholar 

  7. Hoang MH, Kim Y, Kim SJ, Choi DH, Lee SJ (2011). Chem Eur J 17:7772–7776

    Article  CAS  PubMed  Google Scholar 

  8. Yella A, Lee HW, Tsao NH, Yi C, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeer-uddin SM, Grätzel M (2011). Science 334:629–634

    Article  CAS  PubMed  Google Scholar 

  9. Srinivasan A, Furuta H (2005). Acc Chem Res 38:10–20

    Article  CAS  PubMed  Google Scholar 

  10. Stepien M, Latos-Grazynski L (2002). J Am Chem Soc 124:3838–3839

    Article  CAS  PubMed  Google Scholar 

  11. Lash TD (2014). Chem Asian J 9:682–705

    Article  CAS  PubMed  Google Scholar 

  12. Brennan BJ, Liddell PA, Moore TA, Moore AL, Gust D (2013). J Phys Chem B 117:426–432

    Article  CAS  PubMed  Google Scholar 

  13. Luo J, Xu M, Li R, Huang KW, Jiang C, Qi Q, Zeng W, Zhang J, Chi C, Wang P, Wu J (2014). J Am Chem Soc 136:265–272

    Article  CAS  PubMed  Google Scholar 

  14. Wang A, Long L, Zhao W, Song Y, Humphrey MG, Cifuentes MP, Wu X, Fu Y, Zhang D, Li X, Zhang C (2013). Carbon 53:327–338

    Article  CAS  Google Scholar 

  15. Liu B, Zhu W, Wang Y, Wu W, Li X, Chen B, Long YT, Xie Y (2012). J Mater Chem 22:7434–7444

    Article  CAS  Google Scholar 

  16. Huang Y, Li L, Peng X, Peng J, Cao Y (2012). J Mater Chem 22:21841–21844

    Article  CAS  Google Scholar 

  17. Hassan S, Zhou Y, Zhang L, Shi Z, Yang D, Asif HM, Qu N (2016). J Phys Chem C 120:7757–7766

    Article  CAS  Google Scholar 

  18. Cornelis D, Franz E, Asselberghs I, Clays K, Verbiest T, Koeckelberghs G (2011). J Am Chem Soc 133:1317–1327

    Article  CAS  PubMed  Google Scholar 

  19. Coe BJ, Fielden J, Foxon SP, Asselberghs I, Clays K, Brunschwig BS (2010). Inorg Chem 49:10718

    Article  CAS  PubMed  Google Scholar 

  20. Green KA, Cifuentes MP, Corkery C, Smaoc M, Humphrey MG (2009). Angew Chem Int Ed 48:7867–7870

    Article  CAS  Google Scholar 

  21. Ray PC (2010). Chem Rev 110:5332–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khan MU, Khalid M, Ibrahim M, Braga CAA, Safdar M, Al-Saadi AA, Janjua MRSA (2018). J Phys Chem C 122:4009–4018

    Article  CAS  Google Scholar 

  23. Wang L, Wang WY, Fang XY, Zhu CL, Qiu YQ (2016). Org Electron 33:290–299

    Article  CAS  Google Scholar 

  24. Vijay Solomon R, Veerapandian P, Angeline Vedha S, Venuvanalingam P (2012). J Phys Chem A 116:4667–4677

    Article  CAS  PubMed  Google Scholar 

  25. Schulz M, Tretiak S, Chernyak V, Mukamel S (2000). J Am Chem Soc 122:452–459

    Article  CAS  Google Scholar 

  26. Muhammad S, Xu HL, Zhong RL, Su ZM, Al-Sehemi AG, Irfan A (2013). J Mater Chem C 1:5439–5449

    Article  CAS  Google Scholar 

  27. Yu GT, Zhao XG, Niu M, Huang XR, Zhang H, Chen W (2013). J Mater Chem C 1:3833–3841

    Article  CAS  Google Scholar 

  28. Zhou ZJ, Yu GT, Ma F, Huang XR, Wu ZJ, Li ZR (2014). J Mater Chem C 2:306–311

    Article  CAS  Google Scholar 

  29. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005). J Am Chem Soc 127:10977–10981

    Article  CAS  PubMed  Google Scholar 

  30. Niu M, Yu G, Yang G, Chen W, Zhao X, Huang X (2013). Inorg Chem 53:349–358

    Article  CAS  PubMed  Google Scholar 

  31. Yao C, Yan LK, Guan W, Liu CG, Song P, Su ZM (2010). Dalton Trans 39:7645–7649

    Article  CAS  PubMed  Google Scholar 

  32. Liu ZB, Xu YF, Zhang XY, Zhang XL, Chen YS, Tian JG (2009). J Phys Chem B 113:9681–9686

    Article  CAS  PubMed  Google Scholar 

  33. Torres M, Semin S, Razdolski I, Xu J, Elemans JAAW, Rasing T, Rowan AE, Nolte RJM (2015). Chem Commun 51:2855–2858

    Article  CAS  Google Scholar 

  34. Shelton DP, Rice JE (1994). Chem Rev 94:3–29

    Article  CAS  Google Scholar 

  35. Willets A, Rice JE, Burland DM, Shelton DP (1992). J Chem Phys 97:7590–7599

    Article  Google Scholar 

  36. Kanis DR, Ratner MA, Marks TJ (1994). Chem Rev 94:195–242

    Article  CAS  Google Scholar 

  37. Zhong RL, Sun SL, Xu HL, Qiu YQ, Su ZM (2013). J Phys Chem C 117:10039–10044

    Article  CAS  Google Scholar 

  38. Maria, Iqbal J, Ayub k (2016). J Alloys Compd 687:976–983

    Article  CAS  Google Scholar 

  39. Zhang CC, Xu HL, Hu YY, Sun SL, Su ZM (2011). J Phys Chem A 115:2035–2040

    Article  CAS  PubMed  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision A.03. Gaussian, Inc, Wallingford CT

    Google Scholar 

  41. Dennington R, Keith TA, Millam JM (2016) GaussView version 6

  42. Lu T, Chen FW (2012). J Comput Chem 33:580–592

    Article  CAS  Google Scholar 

  43. Oudar JL, Chemla DS (1977). J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

  44. Oudar JL (1977). J Chem Phys 67:446–457

    Article  CAS  Google Scholar 

  45. Datta A, Pati SK (2006). Chem Soc Rev 35:1305–1323

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the start-up Foundation of Fujian University of Technology (GY-Z13109), Development Foundation of Fujian University of Technology (GY-Z160127), the Education Department of Fujian Province(GY-Z17105, JAT170393), Science and Technology Major Special Project of Fujian Province (2014HZ0005-1), Industrial Technology joint Innovation Project of Fujian Province (2015-779), and Fujian Province Science and Technology Innovation Leaders (GY-Z17142).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao-Dong Song or Qian-Ting Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YD., Wang, QT. Enhanced nonlinear optical properties of porphyrin with an extended π-conjugated bridge. Struct Chem 30, 1211–1219 (2019). https://doi.org/10.1007/s11224-018-1261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1261-7

Keywords

Navigation