Skip to main content
Log in

Combining ligand-based and structure-based drug design approaches to study the structure-activity relationships of a β-carboline derivative series

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, we investigated the structure-activity relationships of a series of β-carboline alkaloid derivatives using the 2D-QSAR and molecular docking, in order to identify the mode of interaction between β-carboline derivatives and the PLK1 kinase, and determine their key substituents responsible for the cytotoxic activity. The obtained QSAR models using multiple linear regression (MLR) and partial least squares (PLS) methods showed a high correlation between the experimental activity and the predicted one by PLS (R2PLS = 0.82, q2 = 0.72) and MLR (R2MLR = 0.82, q2 = 0.72). An external dataset was used to test the extrapolation power of the models which resulted in an R2PLS (EV) = 0.76; RMSE = 0.39. The 2D-QSAR analysis reveals that lipophilicity plays an important role in the cytotoxic activity of this group of β-carboline derivatives. Indeed, the molecular docking study into the active site of the polo-like kinase (PLK1) revealed that the most active ligand 57 shows higher binding energy and interacts, especially by H-bonds and hydrophobic interactions, with the active site of the PLK1 kinase. Consequently, the results obtained from the 2D-QSAR and docking studies provided a useful tool to design new and potent β-carboline derivatives as cytotoxic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mohan K, Jeyachandran R, Deepa (2012) Alkaloids as anticancer agents. Ann Phytomed 1:46–53

    CAS  Google Scholar 

  2. Byler KG, Wang C, Setzer WN (2009) Quinoline alkaloids as intercalative topoisomerase inhibitors. J Mol Model 15:1417–1426. https://doi.org/10.1007/s00894-009-0501-6

    Article  CAS  PubMed  Google Scholar 

  3. Abramovitch RA, Spenser ID (2008) The carbolines. Adv Heterocycl Chem 3:79–207. https://doi.org/10.1016/S0065-2725(08)60542-5

    Article  Google Scholar 

  4. Gilbert J, Senyuva HZ (2008) Bioactive compounds in foods. Blackwell Pub, Oxford

    Book  Google Scholar 

  5. Aniszewski T (2015) Alkaloids: chemistry, biology, ecology, and applications2nd edn. Elsevier, Waltham, MA

    Google Scholar 

  6. Zheng W, Wang S, Barnes LF et al (2000) Determination of harmane and harmine in human blood using reversed-phased high-performance liquid chromatography and fluorescence detection. Anal Biochem 279:125–129. https://doi.org/10.1006/abio.1999.4456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Braestrup C, Nielsen M, Olsen CE (1980) Urinary and brain beta-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors. Proc Natl AcadSci 77:2288–2292

    Article  CAS  Google Scholar 

  8. Schupp P, Poehner T, Edrada R et al (2003) Eudistomins W and X, two new β-carbolines from the micronesian tunicate Eudistoma sp. J Nat Prod 66:272–275. https://doi.org/10.1021/np020315n

    Article  CAS  PubMed  Google Scholar 

  9. Nazari Formagio AS, Santos PR, Zanoli K et al (2009) Synthesis and antiviral activity of β-carboline derivatives bearing a substituted carbohydrazide at C-3 against poliovirus and herpes simplex virus (HSV-1). Eur J Med Chem 44:4695–4701. https://doi.org/10.1016/j.ejmech.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  10. Di Giorgio C, Delmas F, Ollivier E et al (2004) In vitro activity of the β-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmaniainfantum. ExpParasitol 106:67–74. https://doi.org/10.1016/j.exppara.2004.04.002

    Article  CAS  Google Scholar 

  11. Waki H, Park KW, Mitro N et al (2007) The small molecule harmine is an antidiabetic cell-type-specific regulator of PPARγ expression. Cell Metab 5:357–370. https://doi.org/10.1016/j.cmet.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  12. Yamazaki Y, Kawano Y (2011) Inhibitory effects of herbal alkaloids on the tumor necrosis factor-α and nitric oxide production in lipopolysaccharide-stimulated RAW264 macrophages. Chem Pharm Bull (Tokyo) 59:388–391

    Article  CAS  Google Scholar 

  13. Chen Q, Chao R, Chen H et al (2005) Antitumor and neurotoxic effects of novel harmine derivatives and structure-activity relationship analysis. Int J Cancer 114:675–682. https://doi.org/10.1002/ijc.20703

    Article  CAS  PubMed  Google Scholar 

  14. Cao R, Peng W, Chen H et al (2005) DNA binding properties of 9-substituted harmine derivatives. BiochemBiophys Res Commun 338:1557–1563. https://doi.org/10.1016/j.bbrc.2005.10.121

    Article  CAS  Google Scholar 

  15. Cao R, Chen Q, Hou X et al (2004) Synthesis, acute toxicities, and antitumor effects of novel 9-substituted β-carboline derivatives. Bioorg Med Chem 12:4613–4623. https://doi.org/10.1016/j.bmc.2004.06.038

    Article  CAS  PubMed  Google Scholar 

  16. Pérez Martín JM, Labrador V, Fernández Freire P et al (2004) Ultrastructural changes induced in HeLa cells after phototoxic treatment with harmine. J ApplToxicol 24:197–201. https://doi.org/10.1002/jat.972

    Article  CAS  Google Scholar 

  17. Song Y, Kesuma D, Wang J et al (2004) Specific inhibition of cyclin-dependent kinases and cell proliferation by harmine. BiochemBiophys Res Commun 317:128–132. https://doi.org/10.1016/j.bbrc.2004.03.019

    Article  CAS  Google Scholar 

  18. Hamsa TP, Kuttan G (2011) Harmine activates intrinsic and extrinsic pathways of apoptosis in B16F-10 melanoma. Chin Med 6:11

    Article  CAS  Google Scholar 

  19. Frédérick R, Bruyère C, Vancraeynest C et al (2012) Novel trisubstituted harmine derivatives with original in vitro anticancer activity. J Med Chem 55:6489–6501. https://doi.org/10.1021/jm300542e

    Article  CAS  PubMed  Google Scholar 

  20. Liu H, Han D, Liu Y et al (2013) Harmine hydrochloride inhibits Akt phosphorylation and depletes the pool of cancer stem-like cells of glioblastoma. J Neuro-Oncol 112:39–48. https://doi.org/10.1007/s11060-012-1034-x

    Article  CAS  Google Scholar 

  21. Zhao L, Wink M (2013) Theβ-carboline alkaloid harmine inhibits telomerase activity of MCF-7 cells by down-regulating hTERT mRNA expression accompanied by an accelerated senescent phenotype. PeerJ 1:e174. https://doi.org/10.7717/peerj.174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang H, Sun K, Ding J et al (2014) Harmine induces apoptosis and inhibits tumor cell proliferation, migration and invasion through down-regulation of cyclooxygenase-2 expression in gastric cancer. Phytomedicine 21:348–355. https://doi.org/10.1016/j.phymed.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  23. Cao M-R, Li Q, Liu Z-L et al (2011) Harmine induces apoptosis in HepG2 cells via mitochondrial signaling pathway. Hepatobiliary Pancreat Dis Int 10:599–604. https://doi.org/10.1016/S1499-3872(11)60102-1

    Article  CAS  PubMed  Google Scholar 

  24. Dai F, Chen Y, Song Y et al (2012) A natural small molecule harmine inhibits angiogenesis and suppresses tumour growth through activation of p53 in endothelial cells. PLoS One 7:e52162. https://doi.org/10.1371/journal.pone.0052162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamsa TP, Kuttan G (2011) Studies on anti-metastatic and anti-invasive effects of harmine using highly metastatic murine B16F-10 melanoma cells. J Environ Pathol Toxicol Oncol 30:123–137. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i2.40

    Article  CAS  PubMed  Google Scholar 

  26. Chen Z, Cao R, Shi B et al (2011) Synthesis and biological evaluation of 1,9-disubstituted β-carbolines as potent DNA intercalating and cytotoxic agents. Eur J Med Chem 46:5127–5137. https://doi.org/10.1016/j.ejmech.2011.08.027

    Article  CAS  PubMed  Google Scholar 

  27. Bain J, Plater L, Elliott M et al (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315. https://doi.org/10.1042/BJ20070797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Göckler N, Jofre G, Papadopoulos C et al (2009) Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite formation: harmine, a specific inhibitor of DYRK1A. FEBS J 276:6324–6337. https://doi.org/10.1111/j.1742-4658.2009.07346.x

    Article  CAS  Google Scholar 

  29. Adayev T, Wegiel J, Hwang Y-W (2011) Harmine is an ATP-competitive inhibitor for dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). Arch BiochemBiophys 507:212–218. https://doi.org/10.1016/j.abb.2010.12.024

    Article  CAS  Google Scholar 

  30. Sobhani AM, Ebrahimi S-A, Mahmoudian M (2002) An in vitro evaluation of human DNA topoisomerase I inhibition by Peganumharmala L. seeds extract and its beta-carboline alkaloids. J Pharm PharmSci 5:19–23

    Google Scholar 

  31. Cao R, Chen H, Peng W et al (2005) Design, synthesis and in vitro and in vivo antitumor activities of novel β-carboline derivatives. Eur J Med Chem 40:991–1001. https://doi.org/10.1016/j.ejmech.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  32. Cao R, Guan X, Shi B et al (2010) Design, synthesis and 3D-QSAR of β-carboline derivatives as potent antitumor agents. Eur J Med Chem 45:2503–2515. https://doi.org/10.1016/j.ejmech.2010.02.036

    Article  CAS  PubMed  Google Scholar 

  33. Han X, Zhang J, Guo L et al (2012) A series of beta-carboline derivatives inhibit the kinase activity of PLKs. PLoS One 7:e46546. https://doi.org/10.1371/journal.pone.0046546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lamchouri F, Settaf A, Cherrah Y et al (2000) In vitro cell-toxicity of Peganumharmala alkaloids on cancerous cell-lines. Fitoterapia 71:50–54

    Article  CAS  Google Scholar 

  35. Lamchouri F, Toufik H, Elmalki Z et al (2013) Quantitative structure–activity relationship of antitumor and neurotoxic β-carbolines alkaloids: nine harmine derivatives. Res ChemIntermed 39:2219–2236. https://doi.org/10.1007/s11164-012-0752-1

    Article  CAS  Google Scholar 

  36. Lamchouri F, Zemzami M, Jossang A et al (2013) Cytotoxicity of alkaloids isolated from Peganumharmala seeds. Pak J Pharm Sci 26:699–706

    CAS  PubMed  Google Scholar 

  37. Lamchouri F, Toufik H, Bouzzine SM et al (2010) Experimental and computational study of biological activities of alkaloids isolated from Peganum harmala seeds. J Mater EnvSci 1:343–352

    CAS  Google Scholar 

  38. ChemAxon, MarvinSketch 2.1.0 (2016). http://www.chemaxon.com. Accessed 01 Dec 2017

  39. Molecular Operating Environment software, Chemical Computing Group Inc., Montreal, Quebec, Canada. http://www.chemcomp.com/

  40. Addinsoft (2014) XLSTAT: data analysis and statistical solution for microsoft excel. Paris, France. http://www.xlstat.com. Accessed 25 Feb 2017

  41. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488. https://doi.org/10.1002/minf.201000061

    Article  CAS  PubMed  Google Scholar 

  42. Dehmer M, Varmuza K, Bonchev D (2012) Statistical modelling of molecular descriptors in QSAR/QSPR: DEHMER:MOL. DESCRIPTOR O-BK. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  43. Roy K (2007) On some aspects of validation of predictive quantitative structure–activity relationship models. Expert Opin Drug Discov 2:1567–1577. https://doi.org/10.1517/17460441.2.12.1567

    Article  CAS  PubMed  Google Scholar 

  44. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701. https://doi.org/10.1002/qsar.200610151

    Article  CAS  Google Scholar 

  45. Trott O, Olson AJ (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J ComputChem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  46. (2016) Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault Systèmes. http://accelrys.com/products/collaborative-science/bioviadiscoverystudio/. accessed 01 Feb 2018

  47. DeLano WL (2008) The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. http://www.pymol.org. Accessed 01 Feb 2018

  48. Consonni V, Ballabio D, Todeschini R (2010) Evaluation of model predictive ability by external validation techniques. J Chemom 24:194–201. https://doi.org/10.1002/cem.1290

    Article  CAS  Google Scholar 

  49. Aptula AO, Jeliazkova NG, Schultz TW, Cronin MTD (2005) The better predictive model: high q2 for the training set or low root mean square error of prediction for the test set? QSAR Comb Sci 24:385–396. https://doi.org/10.1002/qsar.200430909

    Article  CAS  Google Scholar 

  50. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3288. https://doi.org/10.1016/0040-4020(80)80168-2

    Article  CAS  Google Scholar 

  51. Labute P (2000) A widely applicable set of descriptors. J Mol Graph Model 18:464–477. https://doi.org/10.1016/S1093-3263(00)00068-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Akabli or H. Toufik.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akabli, T., Toufik, H., Yasri, A. et al. Combining ligand-based and structure-based drug design approaches to study the structure-activity relationships of a β-carboline derivative series. Struct Chem 29, 1637–1645 (2018). https://doi.org/10.1007/s11224-018-1141-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1141-1

Keywords

Navigation