Skip to main content
Log in

DFT study of the infrared and Raman spectra of photochromic Fulgide; 3-Dicyclopropylmethylene-4-E-[1-(2,5-dimethyl-3-furyl)ethylidene]-5-(4-nitrophenylcyanomethylenetetrahydrofuran-2-one

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The present work reports a theoretical study of vibrational signatures of the photochromic molecular transformation between two photochromic heterocyclic isomers. Raman and infrared (IR) spectra of the E (ring-opened form) and C (ring-closed form) photoisomers of 3-Dicyclopropylmethylene-4-E-[1-(2,5-dimethyl-3-furyl)ethylidene]-5-(4-nitrophenylcyanomethylenetetrahydrofuran-2-one have been calculated in gas phase in the region of 3500–500 cm−1 for both molecules in their ground state. Calculations of the structure parameters and frontier molecular orbitals were carried out using ab initio electronic structure theory at the Hartree-Fock, density functional theory, and Moller-Plesset perturbation theory levels, while calculations of the IR and Raman spectra were carried out using density functional theory with B3LYP functional and 6-31+g(d,p) basis set. After comparing the predicted spectra of both E-form and C-form, we were able to probe the changes that arise upon the ring-closure/ring-opening transformation. The computational results showed that the C-form is ≈ 10.7 kcal/mol lower in energy than the E-form. In addition, two different derivatives were adopted for both E-form and C-form to demonstrate the effect of substituents on the stability of the photoisomers. The theoretical predictions agree well with the reported experimental data, accounting for the molecular structure transformation of the photochromic isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wolak MA, Thomas CJ, Gillespie NB, Birge RR, Lees WJ (2003) Tuning the optical properties of fluorinated Indolylfulgimides. J Org Chem 68(2):319–326. https://doi.org/10.1021/jo026374n

    Article  CAS  PubMed  Google Scholar 

  2. Thomas CJ, Wolak MA, Birge RR, Lees WJ (2001) Improved synthesis of Indolyl Fulgides. J Org Chem 66(5):1914–1918. https://doi.org/10.1021/jo005722n

    Article  CAS  PubMed  Google Scholar 

  3. Koller FO, Schreier WJ, Schrader TE, Malkmus S, Schulz C, Dietrich S, Rück-Braun K, Braun M (2008) Ultrafast ring-closure reaction of photochromic Indolylfulgimides studied with UV-pump−IR-probe spectroscopy. J Phys Chem A 112(2):210–214. https://doi.org/10.1021/jp073545p

    Article  CAS  PubMed  Google Scholar 

  4. Parthenopoulos DA, Rentzepis PM (1990) Transient spectroscopy of a photochromic fulgide. J Mol Struct 224:297–302. https://doi.org/10.1016/0022-2860(90)87024-R

    Article  CAS  Google Scholar 

  5. Chattoraj S, Bhattacharyya K (2016) Biological oscillations: fluorescence monitoring by confocal microscopy. Chem Phys Lett 660:1–10. https://doi.org/10.1016/j.cplett.2016.07.007

    Article  CAS  Google Scholar 

  6. Henri Bouas-Laurent HD (2001) Organic photochromism. Pure Appl Chem 73:639–665

    Article  Google Scholar 

  7. Seibold M, Port H, Wolf HC (1996) Fulgides as light switches for intra-Supermolecular energy transfer. Mol Cryst Liq Cryst Sci Technol, Sect A 283(1):75–80. https://doi.org/10.1080/10587259608037867

    Article  Google Scholar 

  8. Handschuh M, Seibold M, Port H, Wolf HC (1997) Dynamics of the cyclization reaction in photochromic Furyl Fulgides. J Phys Chem A 101(4):502–506. https://doi.org/10.1021/jp961905v

    Article  CAS  Google Scholar 

  9. Draxler S, Brust T, Malkmus S, Koller FO, Heinz B, Laimgruber S, Schulz C, Dietrich S, Rück-Braun K, Zinth W, Braun M (2008) Ultrafast reaction dynamics of the complete photo cycle of an indolylfulgimide studied by absorption, fluorescence and vibrational spectroscopy. J Mol Liq 141(3):130–136. https://doi.org/10.1016/j.molliq.2008.02.001

    Article  CAS  Google Scholar 

  10. Heller HG, Langan JR (1981) Photochromic heterocyclic fulgides. Part 3. The use of (E)-[small alpha]-(2,5-dimethyl-3-furylethylidene)(isopropylidene)succinic anhydride as a simple convenient chemical actinometer. J Chem Soc Perkin Trans 2(2):341–343. https://doi.org/10.1039/P29810000341

    Article  Google Scholar 

  11. Wolak MA, Gillespie NB, Thomas CJ, Birge RR, Lees WJ (2001) Optical properties of photochromic fluorinated indolylfulgides. J Photochem Photobiol A 144(2–3):83–91. https://doi.org/10.1016/S1010-6030(01)00550-0

    Article  CAS  Google Scholar 

  12. Koller FO, Schreier WJ, Schrader TE, Sieg A, Malkmus S, Schulz C, Dietrich S, Rück-Braun K, Zinth W, Braun M (2006) Ultrafast structural dynamics of photochromic Indolylfulgimides studied by vibrational spectroscopy and DFT calculations. J Phys Chem A 110(47):12769–12776. https://doi.org/10.1021/jp0657787

    Article  CAS  PubMed  Google Scholar 

  13. Yasushi Yokoyama TG, Inoue T, Yokoyama M, Kurita Y (1988) Fulgides as efficient photochromic compounds. Role of the substituent on Furylalkylidene moiety of Furylfulgides in the photoreaction. Chem Lett 17

  14. Trulson MO, Dollinger GD, Mathies RA (1989) Excited state structure and femtosecond ring-opening dynamics of 1,3-cyclohexadiene from absolute resonance Raman intensities. J Chem Phys 90(8):4274–4281. https://doi.org/10.1063/1.455784

    Article  CAS  Google Scholar 

  15. Reid PJ, Doig SJ, Wickham SD, Mathies RA (1993) Photochemical ring-opening reactions are complete in picoseconds: a time-resolved UV resonance Raman study of 1,3-cyclohexadiene. J Am Chem Soc 115(11):4754–4763. https://doi.org/10.1021/ja00064a040

    Article  CAS  Google Scholar 

  16. Mohamed TA, Hassan AE, Shaaban IA, Abuelela AM, Zoghaib WM (2017) Conformational stability, spectral analysis (infrared, Raman and NMR) and DFT calculations of 2-Amino-5-(ethylthio)-1,3,4-thiadiazole. J Mol Struct 1130:434–441. https://doi.org/10.1016/j.molstruc.2016.10.002

    Article  CAS  Google Scholar 

  17. Shaaban IA, Hassan AE, Abuelela AM, Zoghaieb WM, Mohamed TA (2016) Infrared, Raman and NMR spectral analysis, vibrational assignments, normal coordinate analysis, and quantum mechanical calculations of 2-Amino-5-ethyl-1,3,4-thiadiazole. J Mol Struct 1103:70–81. https://doi.org/10.1016/j.molstruc.2015.09.007

    Article  CAS  Google Scholar 

  18. Mohamed TA (2005) Some periodic trends, molecular structure, normal coordinate analysis of 1,3,5-trioxane, −trithiane and -triselenane: computational and vibrational studies. J Mol Struct (THEOCHEM) 713(1–3):179–192. https://doi.org/10.1016/j.theochem.2004.10.020

    Article  CAS  Google Scholar 

  19. Durig JR, Ganguly A, Guirgis GA, Bell S, Mohamed TA, Gounev TK (2009) Conformational stability, r 0 structural parameters, barriers to internal rotation, ab initio calculations, and vibrational assignment for 2,2-difluoroethanol. Struct Chem 20(3):489–503. https://doi.org/10.1007/s11224-009-9446-8

    Article  CAS  Google Scholar 

  20. Ziegler T (1991) Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem Rev 91(5):651–667. https://doi.org/10.1021/cr00005a001

    Article  CAS  Google Scholar 

  21. Johnson BG, Fisch MJ (1994) An implementation of analytic second derivatives of the gradient-corrected density functional energy. J Chem Phys 100(10):7429–7442. https://doi.org/10.1063/1.466887

    Article  CAS  Google Scholar 

  22. Komornicki A, Fitzgerald G (1993) Molecular gradients and hessians implemented in density functional theory. J Chem Phys 98(2):1398–1421

    Article  CAS  Google Scholar 

  23. Dunlap BI, Andzelm J (1992) Second derivatives of the local-density-functional total energy when the local potential is fitted. Phys Rev A 45(1):81–87

    Article  CAS  PubMed  Google Scholar 

  24. Wong MW (1996) Vibrational frequency prediction using density functional theory. Chem Phys Lett 256(4):391–399

    Article  CAS  Google Scholar 

  25. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372–1377. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision E.01. Gaussian, Inc., Wallingford

    Google Scholar 

  27. Pulay P (1969) Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. Mol Phys 17:197–204. https://doi.org/10.1080/00268976900100941

    Article  CAS  Google Scholar 

  28. Jensen F (2006) Introduction to computational chemistry2nd edn. Wiley, New York

    Google Scholar 

  29. Abuelela AM, Farag RS, Mohamed TA, Prezhdo OV (2013) Ab initio study of the vibrational signatures for the covalent functionalization of graphene. J Phys Chem C 117(38):19489–19498. https://doi.org/10.1021/jp405819b

    Article  CAS  Google Scholar 

  30. Silverstein R, Webster F (2006) Spectrometric identification of organic compounds. Wiley, New York

  31. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press INC, San Diego

    Google Scholar 

  32. Roeges NPG (1994) A guide to the complete interpretation of infrared spectral of organic structures. Wiley, New York

    Google Scholar 

  33. Abuelela AM, Mohamed TA, Prezhdo OV (2012) DFT simulation and vibrational analysis of the IR and Raman spectra of a CdSe quantum dot capped by methylamine and Trimethylphosphine oxide ligands. J Phys Chem C 116:14674–14681. https://doi.org/10.1021/jp303275v

    Article  CAS  Google Scholar 

  34. Mohamed TA, Guirgis GA, Nashed YE, Durig JR (1999) Spectra and structure of silicon-containing compounds. XXV. Raman and infrared spectra, r0 structural parameters, vibrational assignment, and ab initio calculations of ethyl Chlorosilane-Si-d2. Struct Chem 10(5):333–348. https://doi.org/10.1023/a:1022087310109

    Article  CAS  Google Scholar 

  35. Mohamed TA, Guirgis GA, Nashed YE, Durig JR (1998) Spectra and structures of silicon-containing compounds. XXIV.* Raman and infrared spectra, r0 structural parameters, vibrational assignment, barriers to internal rotation, and ab initio calculations of Ethylsilane. Struct Chem 9(4):255–264. https://doi.org/10.1023/a:1022426829370

    Article  CAS  Google Scholar 

  36. Mohamed TA, Mustafa AM, Zoghaib WM, Afifi MS, Farag RS, Badr Y (2008) Reinvestigation of benzothiazoline-2-thione and 2-mercaptobenzothiazole tautomers: conformational stability, barriers to internal rotation and DFT calculations. J Mol Struct (THEOCHEM) 868(1–3):27–36. https://doi.org/10.1016/j.theochem.2008.07.037

    Article  CAS  Google Scholar 

  37. Mohamed TA, Soliman UA, Hanafy AI, Hassan AM (2008) Conformational stability, barriers to internal rotation of 2-aminothiophenol (d 0 and d 3): a combined vibrational and theoretical approach. J Mol Struct THEOCHEM 865(1):14–24

    Article  CAS  Google Scholar 

  38. Abuelela AM, Mohamed TA, Wilson LD, Zoghaib WM (2016) Raman and infrared spectra, normal coordinate analysis and ab initio calculations of 4-Amino-2-chloropyrimidine-5-carbonitrile. J Mol Struct 1115:85–93. https://doi.org/10.1016/j.molstruc.2016.02.082

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. M. A. F. A. A., and S. S. A. thank the Deanship of Scientific Research at King Faisal University (SA) for financial support. O. V. P. is grateful to US National Science Foundation, grant No. CHE-1565704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Prezhdo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuelela, A.M., Alodail, F.A., Al-Shihry, S.S. et al. DFT study of the infrared and Raman spectra of photochromic Fulgide; 3-Dicyclopropylmethylene-4-E-[1-(2,5-dimethyl-3-furyl)ethylidene]-5-(4-nitrophenylcyanomethylenetetrahydrofuran-2-one. Struct Chem 29, 1085–1094 (2018). https://doi.org/10.1007/s11224-018-1093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1093-5

Keywords

Navigation