Skip to main content
Log in

A new Cu(II) three-dimensional network with 4,4′-oxybis benzoic acid: structural diversity, EPR, and magnetism

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The copper derivative {[Cu4(oba)4(H2O)4]∙H2O}n (1) has been hydro(solvo)thermally synthesized by combining flexible 4,4′-oxybis benzoic acid (oba) and divalent copper nitrate. As a result of the potential coordination modes of carboxylate oxygens from the oba ligand, the aforementioned complex leads to the formation of an interesting 3D framework, as evidenced by single-crystal X-ray diffractometry. Concerning the topology in 1, the dimers [Cu2C4O8] are nodes of a 5-fold 4-connected uninodal net of the type lvt, with point symbol {42.84} and vertex symbol [4.4.84.84.88.88]. The encapsulation of the copper coordination polymer displays a moderate luminescent property. On temperature-dependent magnetic study, it reveals that the magnetic behaviour of 1 can be associated to a strong antiferromagnetic coupling between the two Cu(II) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003). Nature 423:705–714

    Article  CAS  Google Scholar 

  2. Blake AJ, Champness NR, Hubberstey P, Li WS, Withersby MA, Schroder M (1999). Coord Chem Rev 183:117–138

    Article  CAS  Google Scholar 

  3. Hagrman PJ, Hagrman D, Zubieta J (1999). Angew Chem Int Ed 38:2638–2684

    Article  CAS  Google Scholar 

  4. Moulton B, Zaworotko MJ (2001). Chem Rev 101:1629–1658

    Article  CAS  Google Scholar 

  5. Natarajan R, Savitha G, Dominiak P, Wozniak KJN, Moorthy JN (2005). Angew Chem Int Ed 44:2115–2119

    Article  CAS  Google Scholar 

  6. Robson R (2000) J Chem Soc Dalton Trans:3735–3744

  7. O’Keeffe M, Eddaoudi M, Li H, Reineke T, Yaghi OM (2000). J Solid State Chem 152:3–20

    Article  Google Scholar 

  8. Hill RJ, Long DL, Champness NR, Hubberstey P, Schroder M (2005). Acc Chem Res 38:337–343

    Article  Google Scholar 

  9. Wells AF (1977) Three-dimensional nets and Polyhedra. Wiley-Interscience, New York

    Google Scholar 

  10. Yaghi OM, Li HL, Davis C, Richardson D, Groy TL (1998). Acc Chem Res 31:474–479

    Article  CAS  Google Scholar 

  11. Eddaoudi M, Moler DB, Li HL, Chen BL, Reineke TM, O'Keeffe M, Yaghi OM (2001). Acc Chem Res 34:319–327

    Article  CAS  Google Scholar 

  12. Kitagawa S, Kitaura R, Noro S (2004). Angew Chem Int Ed 43:2334–2375

    Article  CAS  Google Scholar 

  13. Dalgarno SJ, Power NP, Atwood JL (2008). Coord Chem Rev 252:825–841

    Article  CAS  Google Scholar 

  14. Delgado-Friedrichs O, Foster MD, O'Keeffe M, Proserpio DM, Treacy MMJ, Yaghi OM (2005). J Solid State Chem 178:2533–2554

    Article  CAS  Google Scholar 

  15. Gu ZG, Cai YP, Fang HC, Zhou ZY, Thallapally PK, Tian JA, Liu J, Exarhos GJ (2010). Chem Commun 46:5373–5375

    Article  CAS  Google Scholar 

  16. Fang HC, Zhu JQ, Zhou LJ, Jia HY, Li SS, Gong X, Li SB, Cai YP, Thallapally PK, Liu J, Exarhos GJ (2010). Cryst Growth Des 10:3277–3284

    Article  CAS  Google Scholar 

  17. Zhao XB, Xiao B, Fletcher AJ, Thomas KM, Bradshaw D, Rosseinsky MJ (2004). Science 306:1012–1021

    Article  CAS  Google Scholar 

  18. Caskey SR, Wong-Foy AG, Matzger AJ (2008). J Am Chem Soc 130:10870–10871

    Article  CAS  Google Scholar 

  19. Ma S, Sun D, Simmons JM, Collier CD, Yuan D, Zhou HC. J Am Chem Soc 130:1012–1016

  20. Murray LJ, Dinca M, Long JR (2009). Chem Soc Rev 38:1294–1314

    Article  CAS  Google Scholar 

  21. Li RY, Wang XY, Liu T, Xu HB, Zhao F, Wang ZM, Gao S (2008). Inorg Chem 47:8134–8142

    Article  CAS  Google Scholar 

  22. Batten SR, Murray KS (2003). Coord Chem Rev 246:103–130

    Article  CAS  Google Scholar 

  23. Narinho MV, Yoshida MI, Guedes KJ, Krambrock K, Bortoluzzi AJ, Horner M, Machado FC, Teles WM (2004). Inorg Chem 43:1539–1544

    Article  Google Scholar 

  24. Zhang X, Guo GC, Zheng FK, Zhou GW, Mao JG, Dong ZC, Huang JS, Mak TCW (2002) J Chem Soc Dalton Trans:1344–1349

  25. Su CY, Cai YP, Chen CL, Smith MD, Kaim W, Loye HC (2003). J Am Chem Soc 125:8595–8613

    Article  CAS  Google Scholar 

  26. Liu HK, Sun WY, Ma DJ, Yu KB, Tang WX (2000) Chem Commun (2000) 591–592

  27. Zhang J, Chew E, Chen S, Pham JTH, Bu XH (2008). Inorg Chem 47:3495–3497

    Article  CAS  Google Scholar 

  28. Wang XT, Wang XH, Wang ZM, Gao S (2009). Inorg Chem 48:1301–1308

    Article  CAS  Google Scholar 

  29. Peng R, Li D, Wu T, Zhou XP, Ng SW (2006). Inorg Chem 45:4035–4046

    Article  CAS  Google Scholar 

  30. Eddaoudi M, Moler DB, Li HL, Chen BL, Reineke TM, O’Keeffe M, Yaghi OM (2001). Acc Chem Res 34:319–326

    Article  CAS  Google Scholar 

  31. Tranchemontagne DJ, Mendoza-Cortes JL, O’Keeffe M, Yaghi OM (2009). Chem Soc Rev 38:1257–1283

    Article  CAS  Google Scholar 

  32. Rao CNR, Natarajan S, Vaidhyanathan R (2004). Angew Chem Int Ed 43:1466–1496

    Article  CAS  Google Scholar 

  33. Lloyd GO, Atwood JL, Barbour LJ (2005) Chem Commun 1845–1847

  34. Montney MR, Krishnan SM, Patel NM, Supkowski RM, LaDuca RL (2007). Cryst Growth Des 7:1145–1153

    Article  CAS  Google Scholar 

  35. Li H, Eddaoudi M, Yaghi OM (1999) Nature 276–279

  36. Edgar M, Mitchell R, Slawin AMZ, Lightfoot P, Wright PA (2001). Chem Eur J 7:5168–5175

    Article  CAS  Google Scholar 

  37. Tao J, Tong M, Chen X (2000) J Chem Soc Dalton Trans:3669–3774

  38. Wang XL, Qin C, Wang EB, Li YG, Su ZM, Xu L, Carlucci L (2005). Angew Chem Int Ed 44:5824–5827

    Article  CAS  Google Scholar 

  39. WINEPR SimFonia, version 1.25, Bruker Analytische Messtechnik GmbH, Karlsruhe, 1996

  40. SADABS Bruker AXS; Madison, Wisconsin, USA, 2004; SAINT, Software Users Guide, Version 6.0; Bruker Analytical X-ray Systems, Madison, WI, 1999

  41. Sheldrick GM (1999) SADABS v2.03: Area-Detector Absorption Correction. University of Göttingen, Germany

  42. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999). J Appl Crystallogr 32:115–119

    Article  CAS  Google Scholar 

  43. Sheldrick GM (2008). Acta Cryst A64:112–122

    Article  Google Scholar 

  44. Farrugia LJ (1999). J Appl Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  45. Chen XM, Liu GF (2002). Chem Eur J 8:4811–4817

    Article  CAS  Google Scholar 

  46. Han ZB, Cheng XN, Chen XM (2005). Cryst Growth Des 5:695–701

    Article  CAS  Google Scholar 

  47. Wang XL, Qin C, Wang EB, Li YG, Su ZM (2005) Chem Commun 5450–5451

  48. Kondo M, Irie Y, Shimizu Y, Miyazawa M, Kawaguchi H, Nakamura A, Naito T, Maeda K, Uchida F (2004). Inorg Chem 43:6139–6145

    Article  CAS  Google Scholar 

  49. Xue DX, Lin JB, Zhang JP, Chen XM (2009). Cryst Eng Comm 11:183–188

    Article  CAS  Google Scholar 

  50. Eddaoudi M, Kim J, Vodak D, Sudik A, Wachter J, O’keeffe M, Yaghi OM (2002). Proc Natl Acad Sci U S A 99:4900–4908

    Article  CAS  Google Scholar 

  51. Blatov VA, Shevchenko AP, Proserpio DM (2014). Cryst Growth Des 14:3576–3586

    Article  CAS  Google Scholar 

  52. Alexandrov EV, Blatov VA, Kochetkov AV, Proserpio DM (2011). Cryst Eng Comm 13:3947–3958

  53. Blatov VA, Carlucci L, Ciani G, Proserpio DM (2004). Cryst Eng Comm 6:378–395

    Article  Google Scholar 

  54. Baburin IA, Blatov VA, Carlucci L, Ciani G, Proserpio DM (2005). J Solid State Chem 178:2452–2474

    Article  CAS  Google Scholar 

  55. Blatov VA, O’Keeffe M, Proserpio DM (2010). Cryst Eng Comm 12:44–48

    Article  CAS  Google Scholar 

  56. Wang XL, Qin C, Wang EB, Li YG, Su ZM (2005) Chem Commun 5450–5452

  57. Yang Q, Chen X, Chen Z, Hao Y, Li Y, Lu Q, Hegen H (2012). Chem Commun 48:10016–10018

    Article  CAS  Google Scholar 

  58. Lee HK, Min D, Cho BY, Lee SW (2004). Bull Kor Chem Soc 25:1955

    Article  CAS  Google Scholar 

  59. Bleaney B, Bowers KD (1952). Proc R Soc Lond A 214:451–465

    Article  CAS  Google Scholar 

  60. Ozarowski A (2008). Inorg Chem 47:9760–9762

    Article  CAS  Google Scholar 

  61. Smith TD, Pilbrow JD (1974). Coord Chem Rev 13:173–278

    Article  CAS  Google Scholar 

  62. Catterick J, Thornton P (1977). Adv Inorg Chem Radiochem 20:291–362

    Article  CAS  Google Scholar 

  63. Lewis J, Mabbs FE, Royston LK, Smail WR (1969) J Chem Soc A 291–296

  64. Sharrock P, Melnik M (1985). Can J Chem 63:52–56

    Article  CAS  Google Scholar 

  65. Wasson JR, Shyr CH, Trapp C (1968). Inorg Chem 7:469–473

    Article  CAS  Google Scholar 

  66. Cariati F, Erre L, Micera G, Menabue L, Saladini M, Prampolini P (1982). Inorg Chim Acta 53:85–89

    Article  Google Scholar 

  67. SHarsch SP, Sobhanadri J (1985). Inorg Chim Acta 108:147–153

    Article  Google Scholar 

  68. Peisach J, Blumberg WE (1974). Arch Biochem Biophys 165:691–704

    Article  CAS  Google Scholar 

  69. Alves WA, de Almeida Santos RH, Paduan-Filho A, Becerra CC, Borin AC, da Costa Ferriera AM (2004). Inorg Chim Acta 357:2269–2278

    Article  CAS  Google Scholar 

  70. Ali MA, Mirza AH, Fereday RJ, Butcher RJ, Fuller JM, Drew SC, Gahan LR, Hanson GR, Moubaraki B, Murray KS (2005). Inorg Chim Acta 358:3937–3948

    Article  CAS  Google Scholar 

  71. Koval IA, Sgobba M, Huisman M, Lüken M, Saint-Aman E, Gamez P, Krebs B, Reedijk J (2006). Inorg Chim Acta 359:4071–4078

    Article  CAS  Google Scholar 

  72. Pradeep CP, Das SK (2009). Polyhedron 28:630–636

    Article  CAS  Google Scholar 

  73. Thakurta S, Rizzoli C, Butcher RJ, Gómez-García CJ, Garribba E, Mitra S (2010). Inorg Chim Acta 363:1395–1403

    Article  CAS  Google Scholar 

  74. Ray A, Mitra S, Dehno Khalaji A, Atmani C, Cosquer N, Triki S, Clemente-Juan JM, Cardona-Serra S, Gómez-García CJ, Butcher RJ, Garribba E, Xu D (2010). Inorg Chim Acta 363:3580–3588

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AD would like to thank the Ministry of Science and Technology, Taiwan, for the financial assistance. We wish to thank Dr. Chiara Massera, Dipartimento di Chimica, Universitá degli Studi di Parma, Parma, Italy, for valuable discussion on X-ray crystallography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Datta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

We did not violate any ethical standards.

Electronic supplementary material

ESM 1

(DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, A., Das, K., Mane, S.B. et al. A new Cu(II) three-dimensional network with 4,4′-oxybis benzoic acid: structural diversity, EPR, and magnetism. Struct Chem 29, 553–561 (2018). https://doi.org/10.1007/s11224-017-1052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1052-6

Keywords

Navigation