Structural Chemistry

, Volume 28, Issue 5, pp 1409–1417 | Cite as

Are metals made from molecules?

Original Research


In the traditional view, covalently bound materials differ in a fundamental way from metallic substances. Though both are built from more basic units that are, in turn, constructed from a small number of atoms, for these two materials classes the nature of these units is thought to be quite different. For covalent solids and liquids, these units are considered to be molecular, meaning that they possess properties and bonding that are retained in the condensed phase and thus they continue to be identifiable within the larger system. For metallic materials, these basic units are considered to be mere constructs that are not observable against the delocalized bonding of metals or alloys. The perceived dissimilarity of metallic and covalently bound materials has fostered distinctly different approaches to their design and improvement. Here, the delocalized view of metallic bonding is examined. This examination suggests that much of the rationale used in the design of molecular materials my be applied to metals and alloys as well.


Metallic bond Near sightedness of electronic matter Charge density Quantum theory of atoms in molecules 



Support of this work under ONR Grant Nos. N00014-10-1-0838 and N00014-16-1-2581 is gratefully acknowledged.


  1. 1.
    Ceder G (2010). MRS Bull 35:693CrossRefGoogle Scholar
  2. 2.
    Wang CC, Pilania G, Ramprasad R (2013). Phys Rev B 87:035103CrossRefGoogle Scholar
  3. 3.
    Cote M, Haynes PD, Molteni C (2002). J Phys Condens Matter 14:9997CrossRefGoogle Scholar
  4. 4.
    Sato K, Katayama-Yoshida H (2002). Semicond Sci Technol 17:367CrossRefGoogle Scholar
  5. 5.
    Nunez S, Venhorst J, Kruse CG (2012). Drug Discov Today 17:10CrossRefGoogle Scholar
  6. 6.
    Sparta M, Alexandrova AN (2011). Mol Simul (Recent Advances in Molecular Simulations, special issue) 37:557Google Scholar
  7. 7.
    Drude P (1900a). Ann Phys 306:566CrossRefGoogle Scholar
  8. 8.
    Drude P (1900b). Ann Phys 308:369CrossRefGoogle Scholar
  9. 9.
    Hohenberg P, Kohn W (1964). Phys Rev 136:B864CrossRefGoogle Scholar
  10. 10.
    Nesbet R (1997). In: Calais J-L, Kryachko E (eds) Conceptual Perspectives in quantum chemistry. Springer, Netherlands, pp 1–58Google Scholar
  11. 11.
    Pickett WE (1989). Computer Physics Reports 9:115Google Scholar
  12. 12.
    ADF2012.01 SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands,
  13. 13.
    Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998). Theor Chem Accounts 99:391Google Scholar
  14. 14.
    Kresse G, Furthmuller J (1996a). Comput Mater Sci 6:15CrossRefGoogle Scholar
  15. 15.
    Kresse G, Furthmuller J (1996b). Phys Rev B 54:11169CrossRefGoogle Scholar
  16. 16.
    te Velde G, Baerends EJ (1991). Phys Rev B 44:7888CrossRefGoogle Scholar
  17. 17.
    Wiesenekker G, Baerends EJ (1991). J Phys Condens Matter 3:6721CrossRefGoogle Scholar
  18. 18.
    BAND2012 SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands,
  19. 19.
    Koritsanszky TS, Coppens P (2001). Chem Rev 101:1583Google Scholar
  20. 20.
    Arnold WD, Sanders LK, McMahon MT, Volkov RV, Wu G, Coppens P, Wilson SR, Godbout N, Oldfield E (2000). J Am Chem Soc 122:4708CrossRefGoogle Scholar
  21. 21.
    Farrugia LJ, Evans C (2005). J Phys Chem A 109:8834CrossRefGoogle Scholar
  22. 22.
    Bader RFW (1995). Int J Quantum Chem 56:409CrossRefGoogle Scholar
  23. 23.
    Bader RFW, Becker P (1988). Chem Phys Lett 148:452CrossRefGoogle Scholar
  24. 24.
    Eberly D, Gardner R, Morse B, Pizer S, Scharlach C (1994). J Math Imaging Vision 4:353CrossRefGoogle Scholar
  25. 25.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford, UKGoogle Scholar
  26. 26.
    Matta CF, Boyd RJ (eds) (2007) The quantum theory of atoms in molecules: from solid state to DNA and Drug Design. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  27. 27.
    Zou PF, Bader RFW (1994). Acta Crystallogr Sect A 50:714CrossRefGoogle Scholar
  28. 28.
    Bader RFW (2009). J Phys Chem A 113:10391CrossRefGoogle Scholar
  29. 29.
    Castillo N, Matta CF, Boyd RJ (2005). Chem Phys Lett 409:265CrossRefGoogle Scholar
  30. 30.
    Eberhart ME (2001). Philos Mag B 81:721CrossRefGoogle Scholar
  31. 31.
    Jones TE, Eberhart ME (2010). Int J Quantum Chem 110:1500CrossRefGoogle Scholar
  32. 32.
    Jones TE, Eberhart ME (2009). J Chem Phys 130:204108CrossRefGoogle Scholar
  33. 33.
    Eberhart M, Jones T (2012a). Found Chem:1–9Google Scholar
  34. 34.
    Vosko SH, Wilk L, Nusair M (1980). Can J Phys 58:1200CrossRefGoogle Scholar
  35. 35.
    van Lenthe E, Ehlers A, Baerends EJ (1999). J Chem Phys 110:8943Google Scholar
  36. 36.
    Tognetti V, Joubert L (2011). J Phys Chem A 115:5505CrossRefGoogle Scholar
  37. 37.
    Miorelli J, Eberhart ME (2016). J Phys Chem A 120:9579CrossRefGoogle Scholar
  38. 38.
    Kohn W (1996). Phys Rev Lett 76:3168CrossRefGoogle Scholar
  39. 39.
    Prodan E, Kohn W (2005). Proc Natl Acad Sci 102:11635CrossRefGoogle Scholar
  40. 40.
    Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865CrossRefGoogle Scholar
  41. 41.
    Ayers PW, Jenkins S (2009). J Chem Phys 130:154104CrossRefGoogle Scholar
  42. 42.
    Eberhart M (1996). Acta Mater 44:2495CrossRefGoogle Scholar
  43. 43.
    Eberhart ME, Jones TE (2012b). Phys Rev B 86:134106CrossRefGoogle Scholar
  44. 44.
    Jones TE, Eberhart ME, Clougherty DP, Woodward CW (2008). Phys Rev Lett 10:085505CrossRefGoogle Scholar
  45. 45.
    Jones TE, Eberhart ME, Imlay S, Mackey C, Olson GB (2012). Phys Rev Lett 109:125506CrossRefGoogle Scholar
  46. 46.
    Jones TE, Miorelli J, Eberhart ME (2014). J Chem Phys 140:084501CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Molecular Theory GroupColorado School of MinesGoldenUSA

Personalised recommendations