Skip to main content
Log in

Are metals made from molecules?

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the traditional view, covalently bound materials differ in a fundamental way from metallic substances. Though both are built from more basic units that are, in turn, constructed from a small number of atoms, for these two materials classes the nature of these units is thought to be quite different. For covalent solids and liquids, these units are considered to be molecular, meaning that they possess properties and bonding that are retained in the condensed phase and thus they continue to be identifiable within the larger system. For metallic materials, these basic units are considered to be mere constructs that are not observable against the delocalized bonding of metals or alloys. The perceived dissimilarity of metallic and covalently bound materials has fostered distinctly different approaches to their design and improvement. Here, the delocalized view of metallic bonding is examined. This examination suggests that much of the rationale used in the design of molecular materials my be applied to metals and alloys as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ceder G (2010). MRS Bull 35:693

    Article  CAS  Google Scholar 

  2. Wang CC, Pilania G, Ramprasad R (2013). Phys Rev B 87:035103

    Article  Google Scholar 

  3. Cote M, Haynes PD, Molteni C (2002). J Phys Condens Matter 14:9997

    Article  CAS  Google Scholar 

  4. Sato K, Katayama-Yoshida H (2002). Semicond Sci Technol 17:367

    Article  CAS  Google Scholar 

  5. Nunez S, Venhorst J, Kruse CG (2012). Drug Discov Today 17:10

    Article  CAS  Google Scholar 

  6. Sparta M, Alexandrova AN (2011). Mol Simul (Recent Advances in Molecular Simulations, special issue) 37:557

    CAS  Google Scholar 

  7. Drude P (1900a). Ann Phys 306:566

    Article  Google Scholar 

  8. Drude P (1900b). Ann Phys 308:369

    Article  Google Scholar 

  9. Hohenberg P, Kohn W (1964). Phys Rev 136:B864

    Article  Google Scholar 

  10. Nesbet R (1997). In: Calais J-L, Kryachko E (eds) Conceptual Perspectives in quantum chemistry. Springer, Netherlands, pp 1–58

  11. Pickett WE (1989). Computer Physics Reports 9:115

  12. ADF2012.01 SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

  13. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998). Theor Chem Accounts 99:391

    CAS  Google Scholar 

  14. Kresse G, Furthmuller J (1996a). Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  15. Kresse G, Furthmuller J (1996b). Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  16. te Velde G, Baerends EJ (1991). Phys Rev B 44:7888

    Article  CAS  Google Scholar 

  17. Wiesenekker G, Baerends EJ (1991). J Phys Condens Matter 3:6721

    Article  Google Scholar 

  18. BAND2012 SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

  19. Koritsanszky TS, Coppens P (2001). Chem Rev 101:1583

  20. Arnold WD, Sanders LK, McMahon MT, Volkov RV, Wu G, Coppens P, Wilson SR, Godbout N, Oldfield E (2000). J Am Chem Soc 122:4708

    Article  CAS  Google Scholar 

  21. Farrugia LJ, Evans C (2005). J Phys Chem A 109:8834

    Article  CAS  Google Scholar 

  22. Bader RFW (1995). Int J Quantum Chem 56:409

    Article  CAS  Google Scholar 

  23. Bader RFW, Becker P (1988). Chem Phys Lett 148:452

    Article  CAS  Google Scholar 

  24. Eberly D, Gardner R, Morse B, Pizer S, Scharlach C (1994). J Math Imaging Vision 4:353

    Article  Google Scholar 

  25. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford, UK

  26. Matta CF, Boyd RJ (eds) (2007) The quantum theory of atoms in molecules: from solid state to DNA and Drug Design. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  27. Zou PF, Bader RFW (1994). Acta Crystallogr Sect A 50:714

    Article  Google Scholar 

  28. Bader RFW (2009). J Phys Chem A 113:10391

    Article  CAS  Google Scholar 

  29. Castillo N, Matta CF, Boyd RJ (2005). Chem Phys Lett 409:265

    Article  CAS  Google Scholar 

  30. Eberhart ME (2001). Philos Mag B 81:721

    Article  CAS  Google Scholar 

  31. Jones TE, Eberhart ME (2010). Int J Quantum Chem 110:1500

    Article  CAS  Google Scholar 

  32. Jones TE, Eberhart ME (2009). J Chem Phys 130:204108

    Article  Google Scholar 

  33. Eberhart M, Jones T (2012a). Found Chem:1–9

  34. Vosko SH, Wilk L, Nusair M (1980). Can J Phys 58:1200

    Article  CAS  Google Scholar 

  35. van Lenthe E, Ehlers A, Baerends EJ (1999). J Chem Phys 110:8943

  36. Tognetti V, Joubert L (2011). J Phys Chem A 115:5505

    Article  CAS  Google Scholar 

  37. Miorelli J, Eberhart ME (2016). J Phys Chem A 120:9579

    Article  CAS  Google Scholar 

  38. Kohn W (1996). Phys Rev Lett 76:3168

    Article  CAS  Google Scholar 

  39. Prodan E, Kohn W (2005). Proc Natl Acad Sci 102:11635

    Article  CAS  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  41. Ayers PW, Jenkins S (2009). J Chem Phys 130:154104

    Article  Google Scholar 

  42. Eberhart M (1996). Acta Mater 44:2495

    Article  CAS  Google Scholar 

  43. Eberhart ME, Jones TE (2012b). Phys Rev B 86:134106

    Article  Google Scholar 

  44. Jones TE, Eberhart ME, Clougherty DP, Woodward CW (2008). Phys Rev Lett 10:085505

    Article  Google Scholar 

  45. Jones TE, Eberhart ME, Imlay S, Mackey C, Olson GB (2012). Phys Rev Lett 109:125506

    Article  Google Scholar 

  46. Jones TE, Miorelli J, Eberhart ME (2014). J Chem Phys 140:084501

    Article  Google Scholar 

Download references

Acknowledgments

Support of this work under ONR Grant Nos. N00014-10-1-0838 and N00014-16-1-2581 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Eberhart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eberhart, M.E. Are metals made from molecules?. Struct Chem 28, 1409–1417 (2017). https://doi.org/10.1007/s11224-017-0917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0917-z

Keywords

Navigation