Structural Chemistry

, Volume 28, Issue 3, pp 813–822 | Cite as

Conformational studies of new pseudotripeptide with pyrazine amidoxime motif and simplified analogs using IR, NMR spectroscopy, and molecular dynamic simulations

  • Olga Ovdiichuk
  • Olga Hordiyenko
  • Evgenia Fotou
  • Caroline Gaucher
  • Axelle Arrault
  • Marie-Christine Averlant-Petit
Original Research


Solution structures of new pyrazine-based pseudotripeptide with amidoxime function and simplified pseudodipeptide analogs were determined by a combination of IR and NMR spectroscopic studies and molecular dynamic simulations using explicit chloroform as a solvent. It was found that proline-phenylalanine dipeptide residue and amidoxime moiety in o-position are essential for intramolecular hydrogen bonding including a seven-membered γ-turn formation. In addition, a cis/trans equilibrium study was present for prolyl amides in polar solvents (D2O and DMSO). A phenylalanine substituent was found to exhibit profound effect on thermodynamic parameters in prolyl peptides. The presence of intramolecular hydrogen bonds dramatically increases the amount of trans isomer in non-hydrogen-bonding CHCl3 and significantly favor cis isomer in hydrogen-bonding solvents such as DMSO and D2O. All molecules are not cytotoxic therefore they can be further studied in relation to potent biological activities.


Amidoxime FT-IR spectroscopy NMR spectroscopy Molecular dynamics Cytocompatibility 



The authors thank the NMR facilities SCBIM (Service Commun de Bioingénierie Moléculaire, Cellulaire et Thérapeutique), FR3209 CNRS-UL of Université de Lorraine, and X-Ray diffraction facilities of Université de Lorraine. We also thank Isabelle FRIES for cytocompatibility tests and to Olivier FABRE for NMR analysis and Emmanuel Wenger for XRD experiments.

Supplementary material

11224_2016_870_MOESM1_ESM.docx (7.5 mb)
ESM 1 (DOCX 7725 kb)


  1. 1.
    Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Varella EA, Nicolaides DN (2008) Recent developments in the chemistry and in the biological applications of amidoximes. Curr Pharm Des 14:1001–1047CrossRefGoogle Scholar
  2. 2.
    Jakopin Z, Dolenc MS (2008) Recent advances in the synthesis of 1,2,4- and 1,3,4-oxadiazoles. Curr Org Chem 12:850–898CrossRefGoogle Scholar
  3. 3.
    Pace A, Pierro P (2009) The new era of 1,2,4-oxadiazoles. Org Biomol Chem 7:4337–4348CrossRefGoogle Scholar
  4. 4.
    Kumar D, Patel G, Chavers AK, Chang KH, Shah K (2011) Synthesis of novel 1,2,4-oxadiazoles and analogues as potential anticancer agents. Eur J Med Chem 46:3085–3092CrossRefGoogle Scholar
  5. 5.
    Borg S, Estenne-Bouhtou G, Luthman K, Csoeregh I, Hesselink W, Hacksell U (1995) Synthesis of 1,2,4-oxadiazole-, 1,3,4-oxadiazole-, and 1,2,4-triazole-derived dipeptidomimetics. J Org Chem 60:3112–3120CrossRefGoogle Scholar
  6. 6.
    Rehse K, Brehme F (1998) New NO donors with antithrombotic and vasodilating activities, part 26. Amidoximes and their prodrugs. Arch Pharm 331:375–379CrossRefGoogle Scholar
  7. 7.
    Jousserandot A, Boucher JL, Henry Y, Niklaus B, Clement B, Mansuy D (1998) Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C = N(OH) bond with formation of nitrogen oxides. Biochemistry 37:17179–17191CrossRefGoogle Scholar
  8. 8.
    Oresmaa L, Kotikoski H, Haukka M, Oksala O, Pohjala E, Vapaatalo H, Moilanen E, Vainiotalo P, Aulaskari P (2006) Synthesis, ocular effects, and nitric oxide donation of imidazole amidoximes. Eur J Med Chem 41:1073–1079CrossRefGoogle Scholar
  9. 9.
    Clement B (2002) Reduction of N-hydroxylated compounds: amidoximes (N-hydroxyamidines) as pro-drugs of amidines. Drug Metab Rev 34:565–579CrossRefGoogle Scholar
  10. 10.
    Ettmayer P, Amidon GL, Clement B, Testa B (2004) Lessons learned from marketed and investigational prodrugs. J Med Chem 47:2393–2404CrossRefGoogle Scholar
  11. 11.
    Peterlin-Mašič L, Cesar J, Zega A (2006) Metabolism-directed optimisation of antithrombotics: the prodrug principle. Curr Pharm Des 12:73–91CrossRefGoogle Scholar
  12. 12.
    Clement B, Lopian K (2003) Characterization of in vitro biotransformation of new, orally active, direct thrombin inhibitor ximelagatran, an amidoxime and ester prodrug. Drug Met Disp 31:645–651CrossRefGoogle Scholar
  13. 13.
    Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–268CrossRefGoogle Scholar
  14. 14.
    Wedemeyer WJ, Welker E, Scheraga HA (2002) Proline cis-trans isomerization and protein folding. Biochemistry 41:14637–14644CrossRefGoogle Scholar
  15. 15.
    Beausoleil E, Lubell WD (1996) Steric effects on the amide isomer equilibrium of prolyl peptides. Synthesis and conformational analysis of N-acetyl-5-tert-butylproline N′-methylamides. J Am Chem Soc 118:12902–12908CrossRefGoogle Scholar
  16. 16.
    Halab L, Lubell WD (2002) Effect of sequence on peptide geometry in 5-tert-butylprolyl type VI β-turn mimics. J Am Chem Soc 124:2474–2484CrossRefGoogle Scholar
  17. 17.
    Taylor CM, Hardre R, Edwards PJB, Park JH (2003) Factors affecting conformation in proline-containing peptides. Org Lett 5:4413–4416CrossRefGoogle Scholar
  18. 18.
    Jiménez AI, Cativiela C, Gómez-Catalán J, Pérez JJ, Aubry A, París M, Marraud M (2000) Influence of side chain restriction and NH···π interaction on the β-turn folding modes of dipeptides incorporating phenylalanine cyclohexane derivatives. J Am Chem Soc 122:5811–5821CrossRefGoogle Scholar
  19. 19.
    Koopmanschap G, Ruijter E, Orru RVA (2014) Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein J Org Chem 10:544–598CrossRefGoogle Scholar
  20. 20.
    Gante J (1994) Peptidomimetics—tailored enzyme inhibitors. Angew Chem Int Ed Engl 33:1699–1720CrossRefGoogle Scholar
  21. 21.
    Ovdiichuk OV, Hordiyenko OV, Medviediev VV, Shishkin OV, Arrault A (2015) Efficient synthesis of nicotinic acid based pseudopeptides bearing an amidoxime function. Synthesis 47:2285–2293CrossRefGoogle Scholar
  22. 22.
    Ovdiichuk OV, Hordiyenko OV, Arrault A (2016) Synthesis and conformational study of novel pyrazine-based pseudopeptides bearing amidoxime, amidoxime ester and 1,2,4-oxadiazole units. Tetrahedron 72:3427–3435CrossRefGoogle Scholar
  23. 23.
    Holenz J, Karlstroem S, Kihlstroem J, Kolmodin K, Lindstroem J, Rakos L, Rotticci D, Swahn BM, Von Berg S (2011) WO2011002409.Google Scholar
  24. 24.
    Ovdiichuk OV, Hordiyenko O, Voitenko Z, Arrault A, Medviediev V (2013) Methyl N-(3-cyano-picolino-yl)-l-tryptophanate. Acta Cryst E E69:o1810CrossRefGoogle Scholar
  25. 25.
    Joshi KB, Verma S (2008) Sequence shuffle controls morphological consequences in a self-assembling tetrapeptide. J Pept Sci 14:118–126CrossRefGoogle Scholar
  26. 26.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457CrossRefGoogle Scholar
  27. 27.
    Case DA, TAD, Cheatham TE, III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10, University of California, San Francisco.Google Scholar
  28. 28.
    Humbert-Voss E, Arrault A, Jamart-Grégoire B (2014) Synthesis and conformational behavior of pseudopeptides containing δ-azaproline. A cis conformational preference for Xaa1–δ-azaPro bond. Tetrahedron 70:363–370CrossRefGoogle Scholar
  29. 29.
    Zhou Z, Deng C, Abbas C, Didierjean C, Averlant-Petit MC, Bodiguel J, Vanderesse R, Jamart-Gregoire B (2014) Synthesis and structural characterization of 2:1 [α/Aza]-oligomers. Eur J Org Chem 34:7643–7650CrossRefGoogle Scholar
  30. 30.
    Fischer L, Didierjean C, Jolibois F, Semetey V, Lozano JM, Briand JP, Marraud M, Poteau R, Guichard G (2008) Propensity for local folding induced by urea fragment in short-chain oligomers. Org Biomol Chem 6:2596–2610CrossRefGoogle Scholar
  31. 31.
    Dado GP, Gellman SH (1993) Structure and thermodynamic characterization of temperature-dependant changes in the folding pattern of a synthetic triamine. J Am Chem Soc 115:4228–4245CrossRefGoogle Scholar
  32. 32.
    Chang X-W, Han Q-C, Jiao Z-G, Weng L-H, Zhang D-W (2010) 1-Aminoxymethylcyclopropanecarboxylic acid as building bloc of β N-O turn and helix: synthesis and conformaional analysis in solution and in the solid state. Tetrahedron 66:9733–9737CrossRefGoogle Scholar
  33. 33.
    MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218:397–412CrossRefGoogle Scholar
  34. 34.
    Fischer S, Dunbrack RL, Karplus M (1994) Cis-trans imide isomerization of the proline dipeptide. J Am Chem Soc 116:11931–11937CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratoire de Chimie Physique MacromoléculaireUMR7375 CNRS Université de LorraineNancyFrance
  2. 2.Chemistry DepartmentTaras Shevchenko National University of KyivKyivUkraine
  3. 3.CITHEFOR, EA3452, Faculté de PharmacieUniversité de LorraineNancyFrance

Personalised recommendations