Skip to main content
Log in

Conformational studies of new pseudotripeptide with pyrazine amidoxime motif and simplified analogs using IR, NMR spectroscopy, and molecular dynamic simulations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Solution structures of new pyrazine-based pseudotripeptide with amidoxime function and simplified pseudodipeptide analogs were determined by a combination of IR and NMR spectroscopic studies and molecular dynamic simulations using explicit chloroform as a solvent. It was found that proline-phenylalanine dipeptide residue and amidoxime moiety in o-position are essential for intramolecular hydrogen bonding including a seven-membered γ-turn formation. In addition, a cis/trans equilibrium study was present for prolyl amides in polar solvents (D2O and DMSO). A phenylalanine substituent was found to exhibit profound effect on thermodynamic parameters in prolyl peptides. The presence of intramolecular hydrogen bonds dramatically increases the amount of trans isomer in non-hydrogen-bonding CHCl3 and significantly favor cis isomer in hydrogen-bonding solvents such as DMSO and D2O. All molecules are not cytotoxic therefore they can be further studied in relation to potent biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Varella EA, Nicolaides DN (2008) Recent developments in the chemistry and in the biological applications of amidoximes. Curr Pharm Des 14:1001–1047

    Article  CAS  Google Scholar 

  2. Jakopin Z, Dolenc MS (2008) Recent advances in the synthesis of 1,2,4- and 1,3,4-oxadiazoles. Curr Org Chem 12:850–898

    Article  CAS  Google Scholar 

  3. Pace A, Pierro P (2009) The new era of 1,2,4-oxadiazoles. Org Biomol Chem 7:4337–4348

    Article  CAS  Google Scholar 

  4. Kumar D, Patel G, Chavers AK, Chang KH, Shah K (2011) Synthesis of novel 1,2,4-oxadiazoles and analogues as potential anticancer agents. Eur J Med Chem 46:3085–3092

    Article  CAS  Google Scholar 

  5. Borg S, Estenne-Bouhtou G, Luthman K, Csoeregh I, Hesselink W, Hacksell U (1995) Synthesis of 1,2,4-oxadiazole-, 1,3,4-oxadiazole-, and 1,2,4-triazole-derived dipeptidomimetics. J Org Chem 60:3112–3120

    Article  CAS  Google Scholar 

  6. Rehse K, Brehme F (1998) New NO donors with antithrombotic and vasodilating activities, part 26. Amidoximes and their prodrugs. Arch Pharm 331:375–379

    Article  CAS  Google Scholar 

  7. Jousserandot A, Boucher JL, Henry Y, Niklaus B, Clement B, Mansuy D (1998) Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C = N(OH) bond with formation of nitrogen oxides. Biochemistry 37:17179–17191

    Article  CAS  Google Scholar 

  8. Oresmaa L, Kotikoski H, Haukka M, Oksala O, Pohjala E, Vapaatalo H, Moilanen E, Vainiotalo P, Aulaskari P (2006) Synthesis, ocular effects, and nitric oxide donation of imidazole amidoximes. Eur J Med Chem 41:1073–1079

    Article  CAS  Google Scholar 

  9. Clement B (2002) Reduction of N-hydroxylated compounds: amidoximes (N-hydroxyamidines) as pro-drugs of amidines. Drug Metab Rev 34:565–579

    Article  CAS  Google Scholar 

  10. Ettmayer P, Amidon GL, Clement B, Testa B (2004) Lessons learned from marketed and investigational prodrugs. J Med Chem 47:2393–2404

    Article  CAS  Google Scholar 

  11. Peterlin-Mašič L, Cesar J, Zega A (2006) Metabolism-directed optimisation of antithrombotics: the prodrug principle. Curr Pharm Des 12:73–91

    Article  Google Scholar 

  12. Clement B, Lopian K (2003) Characterization of in vitro biotransformation of new, orally active, direct thrombin inhibitor ximelagatran, an amidoxime and ester prodrug. Drug Met Disp 31:645–651

    Article  CAS  Google Scholar 

  13. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–268

    Article  CAS  Google Scholar 

  14. Wedemeyer WJ, Welker E, Scheraga HA (2002) Proline cis-trans isomerization and protein folding. Biochemistry 41:14637–14644

    Article  CAS  Google Scholar 

  15. Beausoleil E, Lubell WD (1996) Steric effects on the amide isomer equilibrium of prolyl peptides. Synthesis and conformational analysis of N-acetyl-5-tert-butylproline N′-methylamides. J Am Chem Soc 118:12902–12908

    Article  CAS  Google Scholar 

  16. Halab L, Lubell WD (2002) Effect of sequence on peptide geometry in 5-tert-butylprolyl type VI β-turn mimics. J Am Chem Soc 124:2474–2484

    Article  CAS  Google Scholar 

  17. Taylor CM, Hardre R, Edwards PJB, Park JH (2003) Factors affecting conformation in proline-containing peptides. Org Lett 5:4413–4416

    Article  CAS  Google Scholar 

  18. Jiménez AI, Cativiela C, Gómez-Catalán J, Pérez JJ, Aubry A, París M, Marraud M (2000) Influence of side chain restriction and NH···π interaction on the β-turn folding modes of dipeptides incorporating phenylalanine cyclohexane derivatives. J Am Chem Soc 122:5811–5821

    Article  Google Scholar 

  19. Koopmanschap G, Ruijter E, Orru RVA (2014) Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein J Org Chem 10:544–598

    Article  Google Scholar 

  20. Gante J (1994) Peptidomimetics—tailored enzyme inhibitors. Angew Chem Int Ed Engl 33:1699–1720

    Article  Google Scholar 

  21. Ovdiichuk OV, Hordiyenko OV, Medviediev VV, Shishkin OV, Arrault A (2015) Efficient synthesis of nicotinic acid based pseudopeptides bearing an amidoxime function. Synthesis 47:2285–2293

    Article  CAS  Google Scholar 

  22. Ovdiichuk OV, Hordiyenko OV, Arrault A (2016) Synthesis and conformational study of novel pyrazine-based pseudopeptides bearing amidoxime, amidoxime ester and 1,2,4-oxadiazole units. Tetrahedron 72:3427–3435

    Article  CAS  Google Scholar 

  23. Holenz J, Karlstroem S, Kihlstroem J, Kolmodin K, Lindstroem J, Rakos L, Rotticci D, Swahn BM, Von Berg S (2011) WO2011002409.

  24. Ovdiichuk OV, Hordiyenko O, Voitenko Z, Arrault A, Medviediev V (2013) Methyl N-(3-cyano-picolino-yl)-l-tryptophanate. Acta Cryst E E69:o1810

    Article  Google Scholar 

  25. Joshi KB, Verma S (2008) Sequence shuffle controls morphological consequences in a self-assembling tetrapeptide. J Pept Sci 14:118–126

    Article  CAS  Google Scholar 

  26. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  27. Case DA, TAD, Cheatham TE, III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10, University of California, San Francisco.

  28. Humbert-Voss E, Arrault A, Jamart-Grégoire B (2014) Synthesis and conformational behavior of pseudopeptides containing δ-azaproline. A cis conformational preference for Xaa1–δ-azaPro bond. Tetrahedron 70:363–370

    Article  CAS  Google Scholar 

  29. Zhou Z, Deng C, Abbas C, Didierjean C, Averlant-Petit MC, Bodiguel J, Vanderesse R, Jamart-Gregoire B (2014) Synthesis and structural characterization of 2:1 [α/Aza]-oligomers. Eur J Org Chem 34:7643–7650

    Article  Google Scholar 

  30. Fischer L, Didierjean C, Jolibois F, Semetey V, Lozano JM, Briand JP, Marraud M, Poteau R, Guichard G (2008) Propensity for local folding induced by urea fragment in short-chain oligomers. Org Biomol Chem 6:2596–2610

    Article  CAS  Google Scholar 

  31. Dado GP, Gellman SH (1993) Structure and thermodynamic characterization of temperature-dependant changes in the folding pattern of a synthetic triamine. J Am Chem Soc 115:4228–4245

    Article  CAS  Google Scholar 

  32. Chang X-W, Han Q-C, Jiao Z-G, Weng L-H, Zhang D-W (2010) 1-Aminoxymethylcyclopropanecarboxylic acid as building bloc of β N-O turn and helix: synthesis and conformaional analysis in solution and in the solid state. Tetrahedron 66:9733–9737

    Article  CAS  Google Scholar 

  33. MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218:397–412

    Article  CAS  Google Scholar 

  34. Fischer S, Dunbrack RL, Karplus M (1994) Cis-trans imide isomerization of the proline dipeptide. J Am Chem Soc 116:11931–11937

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the NMR facilities SCBIM (Service Commun de Bioingénierie Moléculaire, Cellulaire et Thérapeutique), FR3209 CNRS-UL of Université de Lorraine, and X-Ray diffraction facilities of Université de Lorraine. We also thank Isabelle FRIES for cytocompatibility tests and to Olivier FABRE for NMR analysis and Emmanuel Wenger for XRD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Christine Averlant-Petit.

Electronic supplementary material

.

ESM 1

(DOCX 7725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovdiichuk, O., Hordiyenko, O., Fotou, E. et al. Conformational studies of new pseudotripeptide with pyrazine amidoxime motif and simplified analogs using IR, NMR spectroscopy, and molecular dynamic simulations. Struct Chem 28, 813–822 (2017). https://doi.org/10.1007/s11224-016-0870-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0870-2

Keywords

Navigation