Skip to main content
Log in

Influence of solvating water molecules on the attacking mechanisms of OH-radical to DNA base pairs: DFT calculations in explicit waters

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

To elucidate the influence of solvating water molecules on the attacking mechanism of OH-radical to DNA base pairs (G–C and A–T), we investigated the reaction mechanism in water, by the use of the density functional theory (DFT) calculations by considering water molecules explicitly. The results reveal that OH-radical is stabilized near the NH2 group of cytosine of G–C by the water molecules hydrogen bonded to the OH-radical and that 2.5 kcal/mol activation free energy is needed for extracting the hydrogen atom from the NH2 group. On the other hand, OH-radical prefers to extract the hydrogen atom from the NH2 group of adenine in the solvated A–T. As for the tautomeric reaction of the base pair attacked by OH-radical, we found the transition state for the reaction from A to T to its tautomeric form A*–T*, although the activation free energy is rather large (25 kcal/mol). By contrast, in the G–C attacked by OH-radical, one central proton can move freely from G to C, resulting in the tautomeric form G*–C*. Therefore, our DFT calculations in explicit water molecules elucidate the possibility that the attacking of OH-radical to G–C causes its tautomeric form G*–C*, while A–T attacked by OH-radical cannot transform into its A*–T* form in a normal condition. This finding will be useful for predicting the effect of OH-radical on the genetic information recorded in DNA base sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Khanduri D, Collins S, Kumar A, Adhikary A, Sevilla MD (2008) J Phys Chem B 112:2168

    Article  CAS  Google Scholar 

  2. Aydogan B, Bolch WE, Swarts SG, Turner JE, Marshall DT (1993) Radiat Res 169:223

    Article  Google Scholar 

  3. Douki T, Cadet J (2008) In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry: from basics to applications in material and life sciences. EDP Sciences, Les Ulis Cedex A

    Google Scholar 

  4. Sies H (1993) FEBS J 215:213

    Article  CAS  Google Scholar 

  5. Cooke MS, Evans MD, Dizdaroglu M, Lunce J (2003) FASEB J 17:1195

    Article  CAS  Google Scholar 

  6. Cadet J, Douki T, Ravanat JL (2010) Free Radic Biol Med 49:9

    Article  CAS  Google Scholar 

  7. Wagner JR, Cadet J (2010) Acc Chem Res 43:564

    Article  CAS  Google Scholar 

  8. Tomita H, Kai M, Kusama T, Ito A (1998) Radiat Environ Biophys 36:235

    Article  CAS  Google Scholar 

  9. Abolfath RM, van Duin ACT, Brabec T (2011) J Phys Chem A 115:11045

    Article  CAS  Google Scholar 

  10. Kumar A, Pottiboyina V, Sevilla MD (2011) J Phys Chem B 115:15129

    Article  CAS  Google Scholar 

  11. Cheng Q, Gu J, Compaan KR, Schaefer HF III (2010) Chem Eur J 16:11848

    Article  CAS  Google Scholar 

  12. Mundy CJ, Colvin E, Quong AA (2002) J Phys Chem A 106:10063

    Article  CAS  Google Scholar 

  13. Abolfath RM, Biswas PK, Rajnarayanam R, Brabec T, Kodym R, Papiez L (2012) J Phys Chem A 116:3940

    Article  CAS  Google Scholar 

  14. Ceron-Carrasco JP, Jacquemin D (2012) RSC Adv 2:11867

    Article  CAS  Google Scholar 

  15. Maruyama Y, Tachikawa M, Kawano S (2005) JSME Inter B48:196

    Article  Google Scholar 

  16. Shimizu E, Hoshino R, Nomura K, Danilov VI, Kurita N (2013) J Mod Phys 4:422

    Article  Google Scholar 

  17. Shimizu E, Tokuyama Y, Okutsu N, Nomura K, Danilov VI, Kurita N (2015) J Biomol Struct Dyn 33:158

    Article  CAS  Google Scholar 

  18. Okutsu N, Shimamura K, Shimizu E, Shulga S, Danilov VI, Kurita N (2016) AIP Conf Proc 1709:020006

    Article  Google Scholar 

  19. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413

    Article  Google Scholar 

  20. Perdew J, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  21. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  22. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  23. Case DA (2012) AMBER12. University of California, San Francisco

    Google Scholar 

  24. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Protein 78:1950

    CAS  Google Scholar 

  25. Jorgensen WL, Chandrasekhar J, Madura J, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  26. Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by Open Partnership Joint Projects of JSPS Bilateral Joint Research Projects between Toyohashi University of Technology and the three institutes of National Academy of Science of Ukraine as well as the grants from the JSPS Grant-in-Aid for Challenging Exploratory Research (No. 22650061), the Murata Science Foundation, the Iketani Science and Technology Foundation, the Tatematsu Foundation and the CASIO Science Promotion Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Kurita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimamura, K., Okutsu, N., Shimizu, E. et al. Influence of solvating water molecules on the attacking mechanisms of OH-radical to DNA base pairs: DFT calculations in explicit waters. Struct Chem 27, 1793–1806 (2016). https://doi.org/10.1007/s11224-016-0800-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0800-3

Keywords

Navigation