Skip to main content
Log in

Interactions between temozolomide and quercetin

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Temozolomide and quercetin are both molecules with important pharmaceutical activity, whose effects can mutually enhance one another when clinically applied simultaneously. Quantum chemical calculations are used to examine how the two molecules might interact with one another. The most stabilizing force arises when the aromatic systems of the two molecules are arranged parallel to one another. These stacked configurations are reinforced by H-bonds, but geometries containing only H-bonds, without the aromatic stacking, are much less stable, even if the H-bonds are short and strong. Comparison between B3LYP and B3LYP-D binding energies allows an evaluation of dispersion energy, which is found to be a primary contributor to the stability of the stacked structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen SF, Nieh S, Jao SW, Liu CL, Wu CH, Chang YC et al (2012) Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells. PLoS ONE 7:e49275

    Article  CAS  Google Scholar 

  2. Schultz CR, Golembieski WA, King DA, Brown SL, Brodie C, Rempel SA (2012) Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival. Mol Cancer 11(20):1–24

    Google Scholar 

  3. Russo M, Palumbo R, Tedesco I, Mazzarella G, Russo P, Iacomino G et al (1999) Quercetin and anti-CD95(Fas/Apo1) enhance apoptosis in HPB-ALL cell line. FEBS Lett 462:322–328

    Article  CAS  Google Scholar 

  4. Min K, Ebeler SE (2008) Flavonoid effects on DNA oxidation at low concentrations relevant to physiological levels. Food Chem Toxicol 46:96–104

    Article  CAS  Google Scholar 

  5. Ghobrial IM, Witzig TE, Adjei A (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 5:178–194

    Article  Google Scholar 

  6. Jakubowicz-Gil J, Langner E, Rzeski W (2011) Kinetic studies of the effects of Temodal and quercetin on astrocytoma cells. Pharmacol Rep 63:403–416

    Article  CAS  Google Scholar 

  7. Jakubowicz-Gil J, Langner E, Wertel I, Piersiak T, Rzeski W (2010) Temozolomide, quercetin and cell death in the MOGGCCM astrocytoma cell line. Chem Biol Interact 188:190–203

    Article  CAS  Google Scholar 

  8. Jakubowicz-Gil J, Langner E, Badwiul D, Wertel I (2013) Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicol Appl Pharmacol 273:580–589

    Article  CAS  Google Scholar 

  9. Sang D, Li R, Lang Q (2014) Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27. Acta Pharmacol Sin 35:832–838

    Article  CAS  Google Scholar 

  10. Protsenko IO, Bulavin LA, Hovorun DM (2010) Investigation of structural properties of quercetin by quantum chemistry methods. In: WDS’10 proceedings of contributed papers, part III, 51–54

  11. Wang X, Li S, Jiang X, Wang C (2015) Site-preference of quercetin hydrogen bonding to adenine. Chem J Chin 36:932–938

    CAS  Google Scholar 

  12. Filip X, Grosu IG, Miclăuş M, Filip C (2013) NMR crystallography methods to probe complex hydrogen bonding networks: application to structure elucidation of anhydrous quercetin. CrystEngComm 15:4131–4142

    Article  CAS  Google Scholar 

  13. Pawlikowska-Pawlęga B, Dziubińska H, Król E, Trębacz K, Jarosz-Wilkołazka A, Paduch R, Gawron A, Gruszecki WI (2014) Characteristics of quercetin interactions with liposomal and vacuolar membranes. Biochim Biophys Acta 1838(1 Pt B):254–265

    Article  Google Scholar 

  14. Islam MR, Zaman A, Jahan I, Chakravorty R (2013) In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer’s disease. J Young Pharm 5:173–179

    Article  CAS  Google Scholar 

  15. Bhat Q, Ahmad S (2015) Quantum chemical calculations and analysis of FTIR, FT–Raman and UV–Vis spectra of temozolomide molecule. J Mol Struct 1099:453–462

    Article  CAS  Google Scholar 

  16. Kasende OE, Matondo A, Muzomwe M, Muya JT, Scheiner S (2014) Interaction between temozolomide and water: preferred binding sites. Comput Theor Chem 1034:26–29

    Article  CAS  Google Scholar 

  17. Kasende OE, Muya JT, Scheiner S (2015) Regioselectivity of the interaction of temozolomide with borane and boron trifluoride. Struct Chem 26:1359–1365

    Article  CAS  Google Scholar 

  18. Kasende OE, Matondo A, Muya JT, Scheiner S (2016) Interaction between temozolomide and HCl: preferred binding sites. Comput Theor Chem 1075:82–86

    Article  CAS  Google Scholar 

  19. Galek P, Pidcock E, Wood P (2011) CCDC, CSD Solid Form Suite, http://www.ccdc.cam.ac.uk/products/csd_solid_form_suite

  20. Lowe PR, Sansom CE, Schwalbe CH, Stevens MF, Clark AS (1992) Antitumor imidazotetrazines. 25. Crystal structure of 8-carbamoyl-3-methylimidazo [5,1- d]-1,2,3,5-tetrazin-4(3H)-one (temozolomide) and structural comparisons with the related drugs mitozolomide and DTIC. J Med Chem 35:3377–3382

    Article  CAS  Google Scholar 

  21. Babu NJ, Sanphui P, Nangia A (2012) Crystal engineering of stable temozolomide cocrystals. Chem Asian J 7:2274–2285

    Article  CAS  Google Scholar 

  22. Babu NJ, Sanphui P, Nath NK, Khandavilli UBR, Nangia A (2013) Temozolomide hydrochloride dehydrate. CrystEngComm 15:666–671

    Article  CAS  Google Scholar 

  23. Kasende OE, Muya JT, Nziko VPN, Scheiner S (2016) Hydrogen bonded and stacked geometries of the temozolomide dimer. J Mol Model 22:77

  24. Kasende OE, Nziko VPN, Scheiner S (2016) H-bonding and stacking interactions between chloroquine and temozolomide. Int J Quantum Chem 116(16):1196–1204. doi:10.1002/qua.2512

    Article  CAS  Google Scholar 

  25. Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions: theory and experiment. Royal Society of Chemistry, Cambridge

    Google Scholar 

  26. Karshikoff A (2006) Non-covalent interactions in proteins. World Scientific, London

    Book  Google Scholar 

  27. Scheiner S (2015) Noncovalent forces. Springer, Switzerland

    Book  Google Scholar 

  28. Maharramov AM, Mahmudov KT, Kopylovich MN, Pombeiro AJL (2016) Non-covalent interactions in the synthesis and design of new compounds. Wiley. ISBN: 978-1-119-10989-1

  29. Lodish H (2000) Molecular cell biology, 4th edn. WH Freeman, New York

    Google Scholar 

  30. Schuster P, Zundel G, Sandorfy C (eds) (1976) The hydrogen bond, recent developments in theory and experiments. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  31. Schuster P (1984) Hydrogen bonds. Springer-Verlag, Berlin, p 120

    Book  Google Scholar 

  32. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer-Verlag, Berlin

    Book  Google Scholar 

  33. Scheiner S (1997) Hydrogen bonding. A theoretical perspective. Oxford University Press, New York

    Google Scholar 

  34. Gilli G, Gilli P (2009) The nature of the hydrogen bond. Oxford University Press, Oxford

    Book  Google Scholar 

  35. Wieczorek R, Dannenberg JJ (2003) H-bonding cooperativity and energetics of helix formation of five 17-amino acid peptides. J Am Chem Soc 125:8124–8129

    Article  CAS  Google Scholar 

  36. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) The electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J Am Chem Soc 125:5973–5987

    Article  CAS  Google Scholar 

  37. Hernández-Soto H, Weinhold F, Francisco JS (2007) Radical hydrogen bonding: origin of stability of radical-molecule complexes. J Chem Phys 127:164102–164110

    Article  Google Scholar 

  38. DelBene JE, Alkorta I, Elguero J (2011) An ab initio study of cooperative effects in ternary complexes X: CNH: Z with X, Z = CNH, FH, ClH, FCl, and HLi: structures, binding energies, and spin–spin coupling constants across intermolecular bonds. Phys Chem Chem Phys 13:13951–13961

    Article  CAS  Google Scholar 

  39. Thakur TS, Kirchner MT, Blaser D, Boese R, Desiraju GR (2011) Nature and strength of C–H⋯O interactions involving formyl hydrogen atoms: computational and experimental studies of small aldehydes. Phys Chem Chem Phys 13:14076–14091

    Article  CAS  Google Scholar 

  40. Mirzaei S, Khalilian MH, Taherpour AA (2015) Mechanistic study of the hydrolytic degradation and protonation of temozolomide. RSC Adv 5:41112–41119

    Article  CAS  Google Scholar 

  41. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5662

    Article  CAS  Google Scholar 

  42. Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comp Mol Sci 1:211–228

    Article  CAS  Google Scholar 

  43. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  44. Walker M, Harvey AJA, Sen A, Dessent CEH (2013) Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 117:12590–12600

    Article  CAS  Google Scholar 

  45. Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112:289–320

    Article  CAS  Google Scholar 

  46. Hohenstein EG, Chill ST, Sherrill CD (2008) Assessment of the performance of the M05 − 2X and M06 − 2X exchange-correlation functionals for noncovalent interactions in biomolecules. J Chem Theor Comput 4:1996–2000

    Article  CAS  Google Scholar 

  47. Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063

    Article  CAS  Google Scholar 

  48. Ferrighi L, Pan Y, Grönbeck H, Hammer B (2012) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. J Phys Chem 116:7374–7379

    CAS  Google Scholar 

  49. Chai JD, Head M (2008) Long-range corrected hybrid density functional with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  50. DiLabio GA, Johnson ER, Otero-de-la-Roza A (2013) Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies. Phys Chem Chem Phys 15:12821–12828

    Article  CAS  Google Scholar 

  51. Gutowski M, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH, van Dujneveldt FB (1993) Accuracy of the boys and bernardi function counterpoise method. J Chem Phys 98:4728–4738

  52. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the difference of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  53. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104–154119

    Article  Google Scholar 

  54. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  55. Becke AD, Johnson ER (2005) Exchange-hole dipole moment and the ospersion interaction. J Chem Phys 122:154104

    Article  Google Scholar 

  56. Johnson ER, Becke AD (2005) A density-functional model of the dispersion interaction. J Chem Phys 123:024101

    Article  Google Scholar 

  57. Axilrod BM, Teller E (1943) Interaction of the van der Waals type between three atoms. J Chem Phys 11:299–300

    Article  CAS  Google Scholar 

  58. Mutto J (1943) Force between non-polar molecules. Proc Phys Math Soc Jpn 17:629–631

    Google Scholar 

  59. See http://www.thch.uni-bonn.de/

  60. Dennington R, Keith T, Millan J (2009) GaussView, version 5. Semichem. Inc., Shawnee Mission, KS

    Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford, CT

    Google Scholar 

  62. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  63. Bader RFW (1990) Atoms in molecules, a quantum theory, vol 22. Clarendon Press, Oxford, p 438

    Google Scholar 

  64. Carroll MT, Chang C, Bader RFW (1988) Mol Phys 63:387–405

    Article  CAS  Google Scholar 

  65. Keith TA (2013) AIMALL. TK Gristmill Software, Overland Park, KS

    Google Scholar 

  66. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

O.E.K. would like to thank the Council for International Exchange of Scholars (CIES) for a Fulbright Visiting Scholar grant at Utah State University. Computer, storage and other resources from the Division of Research Computing in the Office of Research and Graduate Studies at Utah State University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Okuma Emile Kasende or Steve Scheiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasende, O.E., Nzuwah-Nziko, V.P. & Scheiner, S. Interactions between temozolomide and quercetin. Struct Chem 27, 1577–1588 (2016). https://doi.org/10.1007/s11224-016-0788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0788-8

Keywords

Navigation