Skip to main content
Log in

The staple role of hydrogen and halogen bonds in crystalline (E)-8-((2,3-diiodo-4-(quinolin-8-ylthio)but-2-en-1-yl)thio)quinolin-1-ium triiodide

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystal structure of (E)-8-((2,3-diiodo-4-(quinolin-8-ylthio)but-2-en-1-yl)thio)quinolin-1-ium triiodide, determined at 100 K in the space group C2/c, contains the bridge hydrogen bond [N···H···N]+ linking two neighboring quinolinium fragments; the distance N···N is 2.6927(15) Å. The experimental difference Fourier maps at 293 and 100 K lead to a conclusion about the dynamic nature of the H atom disorder. Calculated vibrational modes obtained for the same compound in the space groups C2/c and Cc are in agreement with the experimental Raman spectrum in the low-frequency region; together, they are consistent with a previous supposition about the dynamic nature of the H atom disorder. We have found that the cation–anion interactions are realized through the charge-assisted iodine–iodine halogen bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wuest JD (2005) Engineering crystals by the strategy of molecular tectonics. Chem Commun 47:5830–5837

    Article  Google Scholar 

  2. Hosseini MW (2005) Molecular tectonics: from simple tectons to complex molecular networks. Acc Chem Res 38:313–323

    Article  CAS  Google Scholar 

  3. Resnati G, Boldyreva E, Bombicz P, Kawano M (2015) Supramolecular interactions in the solid state. IUCrJ 2:675–690

    Article  CAS  Google Scholar 

  4. Metrangolo P, Resnati G (2015) Halogen bonding II. Impact on materials chemistry and life sciences. Springer, Zurich

    Book  Google Scholar 

  5. Andrzejewski M, Marciniak J, Rajewski KW, Katrusiak A (2015) Halogen and hydrogen bonds architectures in switchable chains of di- and trihaloimidazoles. Cryst Growth Des 15:1658–1665

    Article  CAS  Google Scholar 

  6. Szafranski M, Katrusiak AJ (2004) Short-range ferroelectric order induced by proton transfer-mediated ionicity. Phys Chem B 108:15709–15713

    Article  CAS  Google Scholar 

  7. Szafranski M, Katrusiak AJ (2008) Giant dielectric anisotropy and relaxor ferroelectricity induced by proton transfers in NH+···N-bonded supramolecular aggregates. J Phys Chem B 112:6779–6785

    Article  CAS  Google Scholar 

  8. Szafranski M, Katrusiak A, McIntyre KJ (2010) Proton disorder in NH···N bonded [dabcoH]+I relaxor: new insights into H-disordering in a one-dimensional H2O ice analogue. Cryst Growth Des 10:4334–4338

    Article  CAS  Google Scholar 

  9. Ratajczak-Sitarz M, Katrusiak A, Dega-Szafran Z, Stefanski G (2013) Systematics in NH+···N-bonded monosalts of 4,4′-bipyridine (44′biPy) with mineral acids. Cryst Growth Des 13:4378–4384

    Article  CAS  Google Scholar 

  10. Sikora M, Bernatowicz P, Szafranski M, Katrusiak A (2014) Quasistatic disorder of NH···N bonds and elastic-properties, relationship in 2-phenylimidazole crystals. J Phys Chem C 118:7049–7056

    Article  CAS  Google Scholar 

  11. Kooijman H, Velders AH, Spek AL (2006) Acta Cryst E62:o21–o23

    Google Scholar 

  12. Chen C-L, Su C-Y, Cai Y-P, Zhang H-X, Xu A-W, Kang B-S, zur Loye HC (2003) Multidimensional frameworks assembled from silver(I) coordination polymers containing flexible bis(thioquinolyl) ligands: role of the intra- and inter-molecular aromatic stacking interactions. Inorg Chem 42:3738–3750

    Article  CAS  Google Scholar 

  13. Krishnakumar V, Ramasamy R (2005) DFT studies and vibrational spectra of isoquinoline and 8-hydroxyquinoline. Spectrochim Acta Part A 61:673–683

    Article  CAS  Google Scholar 

  14. Bahgat K, Ragheb AG (2007) Analysis of vibratinal spectra of 8-hydroxyquinoline and its 5,7-dichloro, 5,7-dibromo, 5,7-diiodo and 5,7-dinitro derivatives based on density functional theory calculations. Cent Eur J Chem 5:201–220

    CAS  Google Scholar 

  15. Svensson PH, Kloo L (2003) Synthesis, structure, and bonding in polyiodide and metal iodide–iodine systems. Chem Rev 103:1649–1684

    Article  CAS  Google Scholar 

  16. Deplano P, Ferraro JR, Mercuri ML, Trogu EF (1999) Structural and Raman spectroscopic studies as complementary tools in elucidating the nature of the bonding in polyiodides and in donor-I2 adducts. Coord Chem Rev 188:71–95

    Article  CAS  Google Scholar 

  17. Batalov VI, Kim DG, Slepukhin PA (2013) Chem Heterocycl Compd 47:1092–1096

    Article  Google Scholar 

  18. Enraf-Nonius (1993) CAD-4-PC software. Enraf-Nonius, Delft

    Google Scholar 

  19. Agilent Technologies (2012) CrysAlisPro software system, version 1.171.35.19. Agilent Technologies, Oxford

    Google Scholar 

  20. CrysAlisPro, Agilent Technologies (1995) Version 1.171.36.28 (release 01-02-2013 CrysAlis171.NET). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark and J.S. Reid. Acta Crystallogr A 51:887–897

  21. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    Article  Google Scholar 

  22. Dovesi R, Orlando R, Civalleri B, Roetti C, Saunders VR, Zicovich-Wilson CM (2005) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Z Kristallogr 220:571–573

    CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  24. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev 38:3098–3100

    Article  CAS  Google Scholar 

  25. Towler MD (1995) Iodine basis set. Theory of condensed matter, University of Cambridge. http://www.tcm.phy.cam.ac.uk/~mdt26/basis_sets/I_basis.txt

  26. Gatti C, Saunders VR, Roetti CJ (1994) Chem Phys 101:10686–10696

    CAS  Google Scholar 

  27. Hanson RM (2010) Jmol-a paradigm shift in crystallographic visualization. J Appl Cryst 43:1250–1260

    Article  CAS  Google Scholar 

  28. Yushina ID, Kolesov BA, Bartashevich EV (2015) Raman spectroscopy study of new thia—and oxazinoquinolinium triodides. New J Chem 39:6163–6170

    Article  CAS  Google Scholar 

  29. Anderson RJ, Bendell DJ, Groundwater PW (2004) Organic spectroscopic analysis: RSC (Tutorial chemistry texts). Royal Society Of Chemistry, London

    Google Scholar 

  30. Huong PV, Schlaak M (1974) Raman and Infrared band shapes of the N–H+···X hydrogen bond in trimethylaminium halide crystals. Chem Phys Lett 27:111–113

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Professor B.A. Kolesov, Institute of Inorganic Chemistry, Novosibirsk, Russia, and D.G. Pikhulya, South Ural State University, Chelyabinsk, for constructive assistance in the collection of Raman spectroscopy data. This work is supported by the Ministry of Education and Science of the Russian Federation, GZ729.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bartashevich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartashevich, E.V., Stash, A.I., Batalov, V.I. et al. The staple role of hydrogen and halogen bonds in crystalline (E)-8-((2,3-diiodo-4-(quinolin-8-ylthio)but-2-en-1-yl)thio)quinolin-1-ium triiodide. Struct Chem 27, 1553–1560 (2016). https://doi.org/10.1007/s11224-016-0785-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0785-y

Keywords

Navigation