Skip to main content
Log in

A computational study of azaphospholes: anions and neutral tautomers

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

One hundred and eleven azaphospholes (31 anions and 80 neutral compounds) have been studied theoretically at the B3LYP/6-311++G(d,p) level. Among the analyzed properties, there are the geometries, mainly the non-planarity of the PH tautomers, the isomerism of the anions, the NH/PH tautomerism of neutral compounds, the chemical shifts and spin–spin coupling constants. The aromaticity has been assessed through Schleyer’s NICS values, preferably NICS(1). Finally, we have compared our calculations with previous ones as well as with the available experimental data for the calculated compounds and for related ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Katritzky AR, Lagowski JM (1967) The principles of heterocyclic chemistry. Methuen & Co Ltd, London

    Google Scholar 

  2. Katritzky AR, Pozharskii AF (2000) Handbook of heterocyclic chemistry. Elsevier Science, Amsterdam

    Google Scholar 

  3. Schofield K, Grimmett MR, Keene BRT (1976) The azoles. Cambridge University Press, Cambridge

    Google Scholar 

  4. Katritzky AR, Rees CW (eds) (1984) Comprehensive heterocyclic chemistry. Pergamon Press, Oxford

    Google Scholar 

  5. Katritzky AR, Rees CW, Scriven EFV (eds) (1996) Comprehensive heterocyclic chemistry II. Elsevier Science, Oxford

    Google Scholar 

  6. Detty MR, O’Regan MB (1994) Tellurium-containing heterocycles. Wiley, New York

    Google Scholar 

  7. Logan ME, Lang MA, Detty MR (2013) Selenium and tellurium heterocycles, Patai’s chemistry of functional groups. Wiley, New York

    Google Scholar 

  8. Omelchenko IV, Shishkin OV, Gorb L, Leszczynski J (2016) Struct Chem 27:101–109

    Article  CAS  Google Scholar 

  9. Becke AD (1993) J Chem Phys 98:5648–5653

    Article  CAS  Google Scholar 

  10. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–655

    Article  CAS  Google Scholar 

  11. Gaussian 09 (2009), Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr., JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford CT

  12. Schleyer PR, Marker C, Dransfeld A, Jiao HJ, Hommes NJRV (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  13. Corminboeuf C, Heine T, Seifert G, Schleyer PR (2004) Phys Chem Chem Phys 6:273–276

    Article  CAS  Google Scholar 

  14. Alkorta I, Rozas I, Elguero J (2001) Tetrahedron 57:6043–6049

    Article  CAS  Google Scholar 

  15. London F (1937) J Phys Radium 8:397–409

    Article  CAS  Google Scholar 

  16. Ditchfield R (1974) Mol Phys 27:789–807

    Article  CAS  Google Scholar 

  17. Silva AMS, Sousa RMS, Jimeno ML, Blanco F, Alkorta I, Elguero J (2008) Magn Reson Chem 46:859–864

    Article  CAS  Google Scholar 

  18. Blanco F, Alkorta I, Elguero J (2007) Magn Reson Chem 45:797–800

    Article  CAS  Google Scholar 

  19. Alkorta I, Blanco F, Elguero J (2010) Theochem 942:1–6

    Article  CAS  Google Scholar 

  20. Gianola AJ, Ichino T, Hoenigman RL, Kato S, Bierbaum VM, Lineberger WC (2004) J Phys Chem A 108:10326–10335

    Article  CAS  Google Scholar 

  21. Alkorta I, Blanco F, Elguero J (2008) J Phys Chem A 112:1817–1822

    Article  CAS  Google Scholar 

  22. Joshi SM, de Cózar A, Gómez-Vallejo V, Koziorowski J, Llop J, Cossío FP (2015) Chem Commun 51:8954–8957

    Article  CAS  Google Scholar 

  23. Taft RW, Anvia F, Taagepera M, Catalán J, Elguero J (1986) J Am Chem Soc 108:3237–3239

    Article  CAS  Google Scholar 

  24. Tomás F, Abboud JLM, Laynez J, Notario R, Santos L, Nilsson SO, Catalán J, Claramunt RM, Elguero J (1989) J Am Chem Soc 111:7348–7353

    Article  Google Scholar 

  25. Catalán J, Sánchez-Cabezudo M, de Paz JLG, Elguero J, Taft RW, Anvia F (1989) J Comput Chem 10:426–433

    Article  Google Scholar 

  26. Tomás F, Catalán J, Pérez P, Elguero J (1994) J Org Chem 59:2799–2802

    Article  Google Scholar 

  27. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  28. Claramunt RM, Alkorta I, Elguero J (2013) Comput Theor Chem 1019:108–115

    Article  CAS  Google Scholar 

  29. Bird CW (1985) Tetrahedron 41:1409–1414

    Article  CAS  Google Scholar 

  30. Veszprémi T, Nyulászi L, Réffy J, Heinicke J (1992) J Phys Chem 96:623–626

    Article  Google Scholar 

  31. Bachrach SM, Perriott L (1994) J Org Chem 59:3394–3397

    Article  CAS  Google Scholar 

  32. Sunderlin LS, Panu D, Puranik DB, Ashe AJ, Squires RR (1994) Organometallics 13:4732–4740

    Article  CAS  Google Scholar 

  33. Nyulászi L (1995) J Phys Chem 99:586–591

    Article  Google Scholar 

  34. Glukhovtsev MN, Dransfeld A (1996) Schleyer PvR. J Phys Chem 100:13447–13454

    Article  CAS  Google Scholar 

  35. Krygowski TM, Cyranski M (1996) Tetrahedron 52:10255–10264

    Article  CAS  Google Scholar 

  36. Delaere D, Dransfeld A, Nguyen MT, Vanquickenborne LG (2000) J Org Chem 65:2631–2636

    Article  CAS  Google Scholar 

  37. Nyulászi L (2000) Tetrahedron 56:79–84

    Article  Google Scholar 

  38. Nyulászi L (2001) Chem Rev 101:1229–1246

    Article  Google Scholar 

  39. Rocha WR, Duarte LWM, De Alneida WB, Caliman V (2002) J Braz Chem Soc 13:597–605

    Article  CAS  Google Scholar 

  40. Pelzer S, Wichmann K, Wesendrup R, Schwerdtfeger P (2002) J Phys Chem A 106:6387–6394

    Article  CAS  Google Scholar 

  41. Mathey F (2003) Angew Chem Int Ed 42:1578–1604

    Article  CAS  Google Scholar 

  42. Alonso M, Herradón B (2010) J Comput Chem 31:917–928

    CAS  Google Scholar 

  43. Coggon P, McPhail AT (1973) J Chem Soc Dalton 1888–1891

  44. Heinicke JW (2016) Eur J Inorg Chem 575–594

  45. Wan L, Alkorta I, Elguero J, Sun J, Zheng W (2007) Tetrahedron 63:9129–9133

    Article  CAS  Google Scholar 

  46. Gupta R, Bansal RK (2016) Comput Theor Chem 1076:1–10

    Article  CAS  Google Scholar 

  47. Jin Y, Perera A, Bartlett RJ (2015) Chem Phys Lett 640:68–71

    Article  CAS  Google Scholar 

  48. Velian A, Cummins CC (2015) Science 348:1001–1004

    Article  CAS  Google Scholar 

  49. Allen FD (2002) Acta Crystallogr Sect B 58:380–388

    Article  Google Scholar 

  50. Polborn K, Schmidpeter A, Märkl G, Willhalm A (1999) Z Naturforsch 54B:187–192

    Google Scholar 

  51. Foces-Foces C, Alkorta I, Elguero J (2000) Acta Crystallogr Sect B 56:1018–1028

    Article  Google Scholar 

  52. Charrier C, Mathey F (1987) Tetrahedron Lett 28:5025–5028

    Article  CAS  Google Scholar 

  53. Heinicke J (1986) Tetrahedron Lett 27:5699–5702

    Article  CAS  Google Scholar 

  54. Claramunt RM, López C, Schmidpter A, Willhalm A, Elguero J, Alkorta I (2001) Spectroscopy 15:27–32

    Article  CAS  Google Scholar 

  55. Caliman V, Hitchcock PB, Nixon JF (1995) J Chem Soc Chem Commun 1661–1662

  56. Bundgaard T, Jakobsen HJ (1972) Tetrahedron Lett 32:3353–3356

    Article  Google Scholar 

  57. Koyanagi Y, Kimura Y, Matano Y (2016) Dalton Trans 45:2190–2200

    Article  CAS  Google Scholar 

  58. Bansal RK, Karaghiosoff K, Schmidpeter A (1994) Tetrahedron 50:7675–7745

    Article  CAS  Google Scholar 

  59. Heinicke J, Tzschach A (1982) Tetrahedron Lett 23:3643–3646

    Article  CAS  Google Scholar 

  60. Negrebetskii VV, Bogel’fer LY, Bobkova RG, Ignatova NP, Shvetsov-Shilovskii NI (1976) Zh Struktur Khim 19:64–68

    Google Scholar 

  61. Kraaijkamp JG, Koten GV, Vrieze K, Grove DM, Klop EA, Spek AL, Schmidpeter A (1983) J Organomet Chem 256:375–389

    Article  CAS  Google Scholar 

  62. Vasil’ev AF, Vilkov LV, Ignatova NP, Mel’nikov NN, Negrebeckij VV, Svecov-Silovskij NI, Chajkin LS (1972) J Prack Chem 314:806–814

    Article  Google Scholar 

  63. Charbonnel Y, Barrans J (1976) Tetrahedron 32:2039–2041

    Article  CAS  Google Scholar 

  64. Schmidpeter A, Luber J, Tautz H (1977) Angew Chem Int Ed Engl 16:546–547

    Article  Google Scholar 

  65. Dash KC, Schmidbaur H, Schmidpeter A (1980) Inorg Chim Acta 46:167–170

    Article  CAS  Google Scholar 

  66. Weinmaier JH, Tautz H, Schmidpeter A (1980) J Organomet Chem 185:53–68

    Article  CAS  Google Scholar 

  67. Schmidpeter A, Tautz H, Seyerl JV, Huttner G (1981) Angew Chem Int Ed 20:408–409

    Article  Google Scholar 

  68. Kraaijkamp JG, Grove DM, Koten GV, Schmidpeter A (1988) Inorg Chem 27:2612–2617

    Article  CAS  Google Scholar 

  69. Herler S, Mayer P, Schmedt auf der Günne J, Schulz A, Villinger A, Weigand JJ (2005) Angew Chem Int Ed 44:7790–7793

    Article  CAS  Google Scholar 

  70. Schulz A, Villinger A (2009) Struct Chem 20:59–62

    Article  CAS  Google Scholar 

  71. Heindl C, Peresypkina EV, Virovets AV, Balász G, Scheer M (2016) Chem Eur J 22:1944–1948

    Article  CAS  Google Scholar 

  72. Cloke FGN, Hitchcock PB, Hunnable P, Nixon JF, Nyulászi L, Niecke E, Thelen V (1998) Angew Chem Int Ed 37:1083–1086

    Article  CAS  Google Scholar 

  73. Hahn FE, Wittenbecher L, Van DL, Fröhlich R, Wibbeling B (2000) Angew Chem Int Ed 39:2307–2310

    Article  CAS  Google Scholar 

  74. Ionkin AS, Marshall WJ, Fish BM, Marchione AA, Howe LA, Davidson F, McEwen CN (2008) Eur J Inorg Chem 2386–2390

  75. Scheer M, Dend S, Scherer OJ, Sierka M (2005) Angew Chem Int Ed 44:3755–3758

    Article  CAS  Google Scholar 

  76. Scherer OJ, Brück T, Wolmershäuser G (1988) Chem Ber 121:935–938

    Article  CAS  Google Scholar 

  77. Carmichael D, Ricard L, Mathey F (1994) J Chem Soc Chem Commun 1167–1168

  78. Rösch W, Facklam T, Regitz M (1987) Tetrahedron 43:3247–3256

    Article  Google Scholar 

  79. Sklorz JAW, Müller C (2016) Eur J Inorg Chem 595–606

  80. Ionkin AS, Marshall WJ, Fish BM, Marchione AA, Howe LA, Davidson F, McEwen CN (2008) Organometallics 27:5118–5121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministerio de Economía y Competitividad (CTQ2015-63997-C2-2-P) and Comunidad Autónoma de Madrid (S2013/MIT-2841, Fotocarbon). Computer, storage and other resources from the CTI (CSIC) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibon Alkorta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 796 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkorta, I., Elguero, J. A computational study of azaphospholes: anions and neutral tautomers. Struct Chem 27, 1531–1542 (2016). https://doi.org/10.1007/s11224-016-0780-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0780-3

Keywords

Navigation