Skip to main content
Log in

Design of 2D nanocrystals

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

New universal method for preparation of 2D nanocrystals has been developed. Dispersion of flat silicon nanocrystals coated with the perfluorophenyl ligands has been obtained. Flat silicon nanocrystals are formed due to specific interactions between the perfluorophenyl ligands. The fact of binding of the perfluorophenyl ligands to the surface of silicon nanoparticles is supported by FTIR spectroscopy. Morphology and structure of the synthesized Si nanoparticles were studied by transmission electron microscopy. The samples comprise two types of nanoparticles: spherical and flat (2D structures). Electron diffraction pattern demonstrates that spherical Si nanoparticles are amorphous. The spot diffraction patterns are observed for flat Si nanoparticles which have the crystalline structure. The size of these particles varies from 15 to 70 nm. Small and large silicon nanoparticles are interrelated: Large flat plates are the products of aggregation and crystallization of small nanoparticles. The role of solvent, 1,2-dimethoxyethane (glyme), in formation and stabilization of silicon nanocrystals was studied in this research by 29Si and 13C MAS NMR spectroscopy. It was shown that silicon nanocrystals were stabilized by the products of cleavage of the C–O bonds in ethers and similar compounds. It was demonstrated that MAS NMR spectroscopy is rather informative for study of the surface of silicon nanoparticles but needs very pure samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Orekhov AS, Savilov SV, Zakharov VN, Yatsenko AV, Aslanov LA (2014) J Nanopart Res 16:2190/1–2190/8

    Article  CAS  Google Scholar 

  2. Orekhov AS, Savilov SV, Zakharov VN, Yatsenko AV, Aslanov LA (2014) Russ J Coord Chem 40:1–4. doi:10.1134/S1070328414010059

    Article  CAS  Google Scholar 

  3. Kelton K, Greer AL (2010) Nucleation in condensed matter: applications in materials and biology (Pergamon materials series). Elsevier Science, Amsterdam

    Google Scholar 

  4. Ischenko AA, Fetisov GV, Aslanov LA (2014) Nanosilicon: properties, synthesis, applications, methods of analysis and control. CRC Press, USA. CISP UK Cambridge. International Science Publishing Ltd (CISP), Taylor & Francis Inc., CRC Press, USA

  5. De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva PM, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H et al (2010) Appl Phys Lett 96:261905/1–261905/3

    Article  Google Scholar 

  6. Hoffmann R (2013) Angew Chem Int Ed 52:93–103

    Article  CAS  Google Scholar 

  7. Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Phys Rev Lett 108:155501/1–155501/5

    CAS  Google Scholar 

  8. Kara A, Enriquez H, Seitsonen AP, Lew Yan Voon LC, Vizzini S, Aufray B, Oughaddou H, Kelm E, Korovin S, Pustovoy V, Surkov A, Vladimirov A (2012) Surf Sci Rep 67:1–18

    Article  CAS  Google Scholar 

  9. Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B (2010) Appl Phys Lett 97:223109/1–223109/2

    Article  CAS  Google Scholar 

  10. Jose D, Datta A (2011) Phys Chem Chem Phys 13:7304–7311

    Article  CAS  Google Scholar 

  11. Nakano H, Nakano M, Nakanishi K, Tanaka D, Sugiyama Y, Ikuno T, Okamoto H, Ohta T (2012) J Am Chem Soc 134:5452–5455

    Article  CAS  Google Scholar 

  12. Wen X-D, Hoffmann R, Ashcroft NW (2013) Adv Mater 25:261–266

    Article  CAS  Google Scholar 

  13. Son JS, Wen X-D, Joo J, Chae J, Baek S, Park K, Kim JH, An K, Yu JH, Kwon SG et al (2009) Angew Chem Int Ed 48:6861–6864

    Article  CAS  Google Scholar 

  14. Ithurria S, Dubertret B (2008) J Am Chem Soc 130:16504–16505

    Article  CAS  Google Scholar 

  15. Joo J, Son JS, Kwon SG, Yu JH, Hyeon T (2006) J Am Chem Soc 128:5632–5633

    Article  CAS  Google Scholar 

  16. Ithurria S, Tessier MD, Mahler B, Lobo RPSM, Dubertret B, Efros AL (2011) Nat Mater 10:936–941

    Article  CAS  Google Scholar 

  17. Bouet C, Tessier MD, Ithurria S, Mahler B, Nadal B, Dubertret B (2013) Chem Mater 25:1262–1271

    Article  CAS  Google Scholar 

  18. Cassette E, Mahler B, Guigner J-M, Patriarche G, Dubertret B, Pons T (2012) ACS Nano 6:6741–6750

    Article  CAS  Google Scholar 

  19. Tessier MD, Javaux C, Maksimovic I, Loriette V, Dubertret B (2012) ACS Nano 6:6751–6758

    Article  CAS  Google Scholar 

  20. Dogan S, Bielewicz T, Cai YX, Klinke C (2012) Appl Phys Lett 101:073102

    Article  Google Scholar 

  21. Reichenba¨cher K, Su¨ss HI, Hulliger J (2005) Chem Soc Rev 34:22–30

    Article  Google Scholar 

  22. Mountford AJ, Lancaster SJ, Coles SJ, Horton PN, Hughes DL, Hursthouse MB, Light ME (2006) Organometallics 25:3837–3847

    Article  CAS  Google Scholar 

  23. Sonoda Y, Goto M, Tsuzuki S, Tamaoki N (2007) J Phys Chem A 111:13441–13451

    Article  CAS  Google Scholar 

  24. Liu J, Murray EM, Young VG Jr (2003) Chem Commun 15:1904–1905

    Article  Google Scholar 

  25. Blanchard D, Hughes RP, Concolino TE, Rheingold AL (2000) Chem Mater 12:1604–1610

    Article  CAS  Google Scholar 

  26. Bach A, Lentz D, Luger P (2001) Acid J Phys Chem A 105:7405–7412

    Article  CAS  Google Scholar 

  27. Han LJ, Fan LY, Meng M, Wang X, Liu CY (2011) Dalton Trans 40:12832–12838

    Article  CAS  Google Scholar 

  28. Martin E, Spendley C, Mountford AJ, Coles SJ, Horton PN, Hughes DL, Hursthouse MB, Lancaster SJ (2008) Organometallics 27:1436–1446

    Article  CAS  Google Scholar 

  29. Senyavin VM, Feklichev ED, Zakharov VN, Kuramshina GM, Aslanov LA (2015) Russ J Coord Chem 41:221–229. doi:10.1134/S1070328415040065

    Article  CAS  Google Scholar 

  30. Aslanov LA, Kudryavtsev IK, Zakharov VN, Kulatov ET, Uspenskii YA (2015) Solid State Phenom 233:575–578. doi:10.4028/www.scientific.net/SSP.233-234.575

    Article  Google Scholar 

  31. Mayeri D, Phillips BL, Augustine MP, Kauzlarich SM (2001) Chem Mater 13:765–770

    Article  CAS  Google Scholar 

  32. Baldwin RK, Pettigrew KA, Ratai E, Augustine MP, Kauzlarich SM (2002) Chem Commun 17:1822–1823

    Article  Google Scholar 

  33. Faulkner RA, DiVerdi JA, Yang Y, Kobayashi T, Maciel GE (2013) Materials 6:18–46

    Article  CAS  Google Scholar 

  34. Schmeltzer JM, Porter LA Jr, Stewart MP, Buriak JM (2002) Langmuir 18:2971–2974

    Article  CAS  Google Scholar 

  35. Heintz AS, Fink MJ, Mitchell BS (2007) Adv Mater 19:3984–3988

    Article  CAS  Google Scholar 

  36. Giuliani JR, Harley SJ, Carter RS, Power PP, Augustine MP (2007) Solid State Nucl Magn Reson 32:1–10

    Article  CAS  Google Scholar 

  37. Carter RS, Harley SJ, Power PP, Augustine MP (2005) Chem Mater 17:2932–2939

    Article  CAS  Google Scholar 

  38. Kolyagin YG, Zakharov VN, Yatsenko AV, Aslanov LA, Izvestia AN (2015) Ser Chem (Russ) 8:1829–1832

    Google Scholar 

  39. Coffn H, Bonafos C, Schamm S, Cherkashin N, Ben Assayag G, Claverie A, Respaud M, Dimitrakis P, Normand P (2006) J Appl Phys 99(4):044302

    Article  Google Scholar 

  40. Carduner KR, Carter RO III, Milberg ME, Crosbie GM (1987) Anal Chem 59:2794–2797

    Article  CAS  Google Scholar 

  41. Kolyagin YG, Zakharov VN, Yatsenko AV, Paseshnichenko KA, Savilov SV, Aslanov LA (2016) J Nanopart Res 18(1):17/1–17/11

    Article  Google Scholar 

  42. Lindner E, Schreiber R, Kemmler M, Schneller T, Mayer HA (1995) Chem Mater 7:951–960

    Article  CAS  Google Scholar 

  43. Tahara S, Takeda Y, Sugahara Y (2005) Chem Mater 17:6198–6204

    Article  CAS  Google Scholar 

  44. Dobryanskaya GI, Mel’nik IV, Zub YL, Dabrowski A (2007) Russ J Phys Chem A 81:339–345

    Article  CAS  Google Scholar 

  45. Dıaz-Morales U, Bellussi G, Carati A, Millini R, Parker WON Jr, Rizzo C (2006) Micropor Mesopor Mater 87:185–191

    Article  Google Scholar 

  46. Gottlieb HE, Kotlyar V, Nudelman A (1997) J Org Chem 62:7512–7515

    Article  CAS  Google Scholar 

  47. Kriesel JW, Don Tilley T (2000) Chem Mater 12:1171–1179

    Article  CAS  Google Scholar 

  48. Chaker JA, Santilli CV, Pulcinelli SH, Dahmouche K, Brioisb V, Judeinstein P (2007) J Mater Chem 17:744–757

    Article  CAS  Google Scholar 

  49. Shimojima A, Goto R, Atsumi N, Kuroda K (2008) Chem Eur J 14:8500–8506

    Article  CAS  Google Scholar 

  50. Cook RL (2004) Anal Bioanal Chem 378:1484–1503

    Article  CAS  Google Scholar 

  51. Kamyshny A, Zakharov VN, Zakharov MA, Yatsenko AV, Savilov SV, Aslanov LA, Magdassi S (2011) J Nanopart Res 13:1971–1978

    Article  CAS  Google Scholar 

  52. Aslanov LA, Zakharov VN, Zakharov MA, Kamyshny AL, Magdassi Sh, Yatsenko AV (2010) Russ J Coord Chem 36:330–332. doi:10.1134/S1070328410050027

    Article  CAS  Google Scholar 

  53. Liu Q, Kauzlarich SM (2002) Mater Sci Eng B 96:72–75

    Article  Google Scholar 

  54. Zou J, Sanelle P, Pettigrew KA, Kauzlarich SM (2006) J Cluster Sci 17:565–578

    Article  CAS  Google Scholar 

  55. Azzena U, Dettori G, Mascia I, Pisano L, Pittalis M (2007) Tetrahedron 63:11998–12006

    Article  CAS  Google Scholar 

  56. Grobelny Z, Stolarzewicz A, Maercker A, Krompiec S, Kasperczyk J, Rzepa J (2004) J Organomet Chem 689:1580–1585

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Russian Foundation for Basic Research (Grant 15-03-06948) and Lomonosov Moscow State University Program of Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Aslanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, V.N., Yatsenko, A.V., Paseshnichenko, K.A. et al. Design of 2D nanocrystals. Struct Chem 28, 141–146 (2017). https://doi.org/10.1007/s11224-016-0773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0773-2

Keywords

Navigation