Skip to main content
Log in

Influence of conformational parameters on physical properties of copolyimides containing pendant diphenylphosphine oxide units

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Modification or designing new molecular architectures are the key strategies to obtain materials with improved/tunable properties able to address environmental restrictions and public needs. Herein, a series of copolyimides containing bulky diphenylphosphine oxide pendant units was synthesized and the physical properties were studied and correlated with the conformational parameters, such as Kuhn segments, Van der Waals and free volumes. It is shown that conformational rigidity determines the packing of macromolecules in glass state, and therefore the free volume, glass transition and dielectric permittivity. The Kuhn segment of the synthesized random copolyimides calculated by Monte Carlo method exhibited a nonlinear dependence on chemical composition. The use of correlations between the chemical structure and conformational parameters is the key to achieve polymers with tailored physicochemical characteristics by varying the comonomers’ ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sroog CE (1991) Polyimides. Prog Polym Sci 16:561–694

    Article  CAS  Google Scholar 

  2. Yoon J-Y, Kim YH, Ka J-W, Hong S-K, Yi MH, Jang K-S (2014) A high-temperature resistant polyimide gate insulator surface-modified with a YO x interlayer for high-performance, solution-processed Li-doped ZnO thin-film transistors. J Mater Chem C 2:2191–2197

    Article  CAS  Google Scholar 

  3. Kwon J, Kim J, Park D, Han H (2015) A novel synthesis method for an open-cell microsponge polyimide for heat insulation. Polymer 56:68–72

    Article  CAS  Google Scholar 

  4. Guan Y, Wang D, Song G, Dang G, Chen C, Zhou H, Zhao X (2014) Novel soluble polyimides derived from 2,2′-bis[4-(5-amino-2-pyridinoxy)phenyl]hexafluoropropane: preparation, characterization, and optical, dielectric properties. Polymer 55:3634–3641

    Article  CAS  Google Scholar 

  5. Wang Q, Wang C, Wang T (2013) Controllable low dielectric porous polyimide films templated by silica microspheres: microstructure, formation mechanism, and properties. J Colloid Interface Sci 389:99–105

    Article  CAS  Google Scholar 

  6. Dai J, Sullivan DM, Bruening ML (2000) Ultrathin, layered polyamide and polyimide coatings on aluminum. Ind Eng Chem Res 39:3528–3535

    Article  CAS  Google Scholar 

  7. An H-Y, Zhan M-S, Wang K (2011) Synthesis and properties of fluorene-based polyimide adhesives. Polym Eng Sci 51:1533–1540

    Article  CAS  Google Scholar 

  8. Samant SM, Babu GN, Murthy MVR (1982) Preparation and properties of silane end-capped polyimide adhesives: structure–property relationship. Int J Polym Mater 9:225–238

    Article  CAS  Google Scholar 

  9. Gong G, Wu J, Liu J, Sun N, Zhao Y, Jiang L (2012) Bio-inspired adhesive superhydrophobic polyimide mat with high thermal stability. J Mater Chem 22:8257–8262

    Article  CAS  Google Scholar 

  10. Wilson D (1990) Polyimides as resin matrices for advanced composites. In: Wilson D, Stenzenberger H, Hergenrother P (eds) Polyimides. Springer, Dordrecht, pp 187–226

    Chapter  Google Scholar 

  11. Serbezeanu D, Popa AM, Sava I, Carja I-D, Amberg M, Rossi RM, Fortunato G (2015) Design and synthesis of polyimide–gold nanofibers with tunable optical properties. Eur Polym J 64:10–20

    Article  CAS  Google Scholar 

  12. Chen B-K, Chiu TM, Tsay S-Y (2004) Synthesis and characterization of polyimide/silica hybrid nanocomposites. J Appl Polym Sci 94:382–393

    Article  CAS  Google Scholar 

  13. Liaw D-J, Liaw B-Y, Yu C-W (2001) Synthesis and characterization of new organosoluble polyimides based on flexible diamine. Polymer 42:5175–5179

    Article  CAS  Google Scholar 

  14. de Abajo J, de la Campa JG (1999) Processable aromatic polyimides. In: Kricheldorf HR (ed) Progress in polyimide chemistry I, vol 140. Advances in polymer science, vol 140. Springer, Berlin, pp 23–59

    Chapter  Google Scholar 

  15. Shao Y, Li Y, Zhao X, Ma T, Gong C, Yang F (2007) Synthesis and characterization of soluble polyimides derived from a novel unsymmetrical diamine monomer: 1,4-(2′,4″-diaminodiphenoxy)benzene. Eur Polym J 43:4389–4397

    Article  CAS  Google Scholar 

  16. Shao Y, Li Y-F, Zhao X, Wang X-L, Ma T, Yang F-C (2006) Synthesis and properties of fluorinated polyimides from a new unsymmetrical diamine: 1,4-(2′-trifluoromethyl-4′,4′-diaminodiphenoxy)benzene. J Polym Sci Part A Polym Chem 44:6836–6846

    Article  CAS  Google Scholar 

  17. Sasaki T, Moriuchi H, Yano S, Yokota R (2005) High thermal stable thermoplastic–thermosetting polyimide film by use of asymmetric dianhydride (a-BPDA). Polymer 46:6968–6975

    Article  CAS  Google Scholar 

  18. Hamciuc C, Carja I-D, Hamciuc E, Vlad-Bubulac T, Ignat M (2013) Phthalonitrile-containing aromatic polyimide thin films with nano-actuation properties. Polym Adv Technol 24:258–265

    Article  CAS  Google Scholar 

  19. Hamciuc C, Hamciuc E, Homocianu M, Nicolescu A, Carja I-D (2015) Blue light-emitting polyamide and poly(amide-imide)s containing 1,3,4-oxadiazole ring in the side chain. Dyes Pigment 114:110–123

    Article  CAS  Google Scholar 

  20. Carja I-D, Hamciuc C, Hamciuc E, Vlad-Bubulac T, Serbezeanu D, Lisa G (2012) Phosphorus-containing poly(ester imide) with pendant phthalonitrile groups. Rev Roum Chim 57:623

    CAS  Google Scholar 

  21. Wang C-S, Leu T-S (2000) Synthesis and characterization of polyimides containing naphthalene pendant group and flexible ether linkages. Polymer 41:3581–3591

    Article  CAS  Google Scholar 

  22. Li Y, Chu Y, Fang R, Ding S, Wang Y, Shen Y, Zheng A (2012) Synthesis and memory characteristics of polyimides containing noncoplanar aryl pendant groups. Polymer 53:229–240

    Article  CAS  Google Scholar 

  23. Han Y, Fang X-Z, Zuo X-X (2010) Synthesis and properties of novel melt processable isomeric polythioetherimides. High Perform Polym 22:989–1003

    Article  CAS  Google Scholar 

  24. Yang C-P, Chen R-S, Hsu M-F (2002) Synthesis and properties of soluble 3,3′,4,4′-benzophenonetetracarboxylic dianhydride copolyimides based on 1,1-bis[4-(4-aminophenoxy)phenyl]-1-phenylethane and commercial dianhydrides. J Polym Res 9:245–250

    Article  CAS  Google Scholar 

  25. Wang W, Wu Q, Ding L, Yang Z, Zhang A (2008) Synthesis and characterization of soluble copolyimides containing chalcone and phosphine oxide moieties in the main chain. J Appl Polym Sci 107:593–598

    Article  CAS  Google Scholar 

  26. Ghosh A, Sen SK, Banerjee S, Voit B (2012) Solubility improvements in aromatic polyimides by macromolecular engineering. RSC Adv 2:5900–5926

    Article  CAS  Google Scholar 

  27. Yagci Acar H, Ostrowski C, Mathias LJ (2001) Investigation of structure-property relationships in aromatic polyimides and polyamides. In: Mittal KL (ed) Polyimides and other high temperature polymers: synthesis, characterization and applications, vol 1. VSP BV, Oud-Beijerland, pp 3–18

    Google Scholar 

  28. Liu Y-L, Hsiue G-H, Lan C-W, Kuo J-K, Jeng R-J, Chiu Y-S (1997) Synthesis, thermal properties, and flame retardancy of phosphorus containing polyimides. J Appl Polym Sci 63:875–882

    Article  CAS  Google Scholar 

  29. Tan Z, Wu C, Zhang M, Lv W, Qiu J, Liu C (2014) Phosphorus-containing polymers from tetrakis-(hydroxymethyl)phosphonium sulfate iii. A new hydrolysis-resistant tris(allyloxymethyl)phosphine oxide and its thiol-ene reaction under ultraviolet irradiation. RSC Adv 4:41705–41713

    Article  CAS  Google Scholar 

  30. Rauhut MM, Hechenbleikner I, Currier HA, Wystrach VP (1958) Oxidation of secondary phosphines to secondary phosphine oxides. J Am Chem Soc 80:6690–6691

    Article  CAS  Google Scholar 

  31. Peng W, Shreeve JM (2005) Rapid and high yield oxidation of phosphine, phosphite and phosphinite compounds to phosphine oxides, phosphates and phosphinates using hypofluorous acid–acetonitrile complex. J Fluor Chem 126:1054–1056

    Article  CAS  Google Scholar 

  32. Qiu Z, Wang J, Zhang Q, Zhang S, Ding M, Gao L (2006) Synthesis and properties of soluble polyimides based on isomeric ditrifluoromethyl substituted 1,4-bis(4-aminophenoxy)benzene. Polymer 47:8444–8452

    Article  CAS  Google Scholar 

  33. Spontón M, Ronda JC, Galià M, Cádiz V (2007) Flame retardant epoxy resins based on diglycidyl ether of (2,5-dihydroxyphenyl)diphenyl phosphine oxide. J Polym Sci Part A Polym Chem 45:2142–2151

    Article  Google Scholar 

  34. Pavlova SA, Timofeeva GI, Ronova IA, Pancratova LA (1980) Unperturbed dimensions of cyclochain polymers. J Polym Sci Part B Polym Phys 18:1–18

    Article  CAS  Google Scholar 

  35. Ronova I, Bruma M, Schmidt H-W (2012) Conformational rigidity and dielectric properties of polyimides. Struct Chem 23:219–226

    Article  CAS  Google Scholar 

  36. Pavlova SSA, Ronova IA, Timofeeva GI, Dubrovina LV (1993) On the flexibility of cyclochain polymers. J Polym Sci Part B Polym Phys 31:1725–1757

    Article  CAS  Google Scholar 

  37. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  38. Rozhkov EM, Schukin BV, Ronova IA (2003) Methods for the calculation of occupied volumes in glassy polymers: the lattice integration and the Monte Carlo methods. CentEurJChem 1:402–426

    CAS  Google Scholar 

  39. Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, New York

    Book  Google Scholar 

  40. Hu Z, Chen L, Zhao B, Luo Y, Wang D-Y, Wang Y-Z (2011) A novel efficient halogen-free flame retardant system for polycarbonate. Polym Degrad Stab 96:320–327

    Article  CAS  Google Scholar 

  41. Brostow W, Chiu R, Kalogeras IM, Vassilikou-Dova A (2008) Prediction of glass transition temperatures: binary blends and copolymers. Mater Lett 62:3152–3155

    Article  CAS  Google Scholar 

  42. Maiti S, Banerjee S, Palit SK (1993) Phosphorus-containing polymers. Prog Polym Sci 18:227–261

    Article  CAS  Google Scholar 

  43. Hergenrother PM, Thompson CM, Smith JG Jr, Connell JW, Hinkley JA, Lyon RE, Moulton R (2005) Flame retardant aircraft epoxy resins containing phosphorus. Polymer 46:5012–5024

    Article  CAS  Google Scholar 

  44. Li Z, Liu J, Gao Z, Yin Z, Fan L, Yang S (2009) Organo-soluble and transparent polyimides containing phenylphosphine oxide and trifluoromethyl moiety: synthesis and characterization. Eur Polym J 45:1139–1148

    Article  CAS  Google Scholar 

  45. Ronova IA, Bruma M (2013) Conformational analysis of random copolymers and influence of their compositions on physical properties. Struct Chem 24:993–1000

    Article  CAS  Google Scholar 

  46. Rusu RDR, Damaceanu MD, Bruma M, Ronova IA (2011) Effect of conformational parameters on thermal properties of some poly(oxadiazole-naphthylimide)s. Iran Polym J 20:29–40

    CAS  Google Scholar 

  47. Carja I-D, Hamciuc C, Vlad-Bubulac T, Bruma M, Ronova IA (2013) Effect of conformational parameters on physical properties of polymers containing pendant phenoxyphthalonitrile substituents. Struct Chem 24:1693–1703

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNCSIS-UEFISCDI, under Grant Number 28/29.04.2013, code PNII RU-TE-2012-3-0123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionela-Daniela Carja.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carja, ID., Serbezeanu, D., Bruma, M. et al. Influence of conformational parameters on physical properties of copolyimides containing pendant diphenylphosphine oxide units. Struct Chem 27, 1465–1477 (2016). https://doi.org/10.1007/s11224-016-0765-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0765-2

Keywords

Navigation