Skip to main content
Log in

Evaluations of AMBER force field parameters by MINA approach for copper-based nucleases

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We describe the development of the AMBER force field parameters for 46 nucleases involving most kinds of copper nucleases with high DNA affinities and specificities by MINA approach that could evaluate accurate force constants for batch bonds/angles on the basis of energies of three adjacent lengths/angles geometries. The molecular mechanics (MM) and molecular dynamic simulations on adducts of the 21 representative copper-based nucleases with DNA are in excellent agreement with those of experimental results. Furthermore, to validate the evaluated parameters, the studied structures performed frequency analysis together with normal mode calculations in quantum mechanics and MM calculations. The force field parameters evaluated in this work provide an extension of AMBER force field, and the results of molecular dynamics simulations of adduct of copper nuclease and duplex DNA illustrate the potential utility of these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cowan JA (2001) Curr Opin Chem Biol 5:634–642

    Article  CAS  Google Scholar 

  2. Pitie M, Boldron C, Gornitzka H, Hemmert C, Donnadieu B, Meunier B (2003) Eur J Inorg Chem 2003:528–540

    Article  Google Scholar 

  3. Pitie M, Sudres B, Meunier B (1998) Chem Commun 1998:2597–2598

    Article  Google Scholar 

  4. Metcalfe C, Thomas JA (2003) Chem Soc Rev 32:215–224

    Article  CAS  Google Scholar 

  5. Erkkila KE, Odom DT, Barton JK (1999) Chem Rev 99:2777–2796

    Article  CAS  Google Scholar 

  6. Armitage B (1998) Chem Rev 98:1171–1200

    Article  CAS  Google Scholar 

  7. Pogozelski WK, Tullius TD (1998) Chem Rev 98:1089–1108

    Article  CAS  Google Scholar 

  8. Liu C, Wang M, Zhang T, Sun H (2004) Coord Chem Rev 248:147–168

    Article  CAS  Google Scholar 

  9. Burrows CJ, Muller JG (1998) Chem Rev 98:1109–1151

    Article  CAS  Google Scholar 

  10. Whittaker JW (2003) Chem Rev 103:2347–2364

    Article  CAS  Google Scholar 

  11. Oyoshi T, Sugiyama H (2000) J Am Chem Soc 122:6313–6314

    Article  CAS  Google Scholar 

  12. Dhar S, Reddy PAN, Nethaji M, Mahadevan S, Saha MK, Chakravarty AR (2002) Inorg Chem 41:3469–3476

    Article  CAS  Google Scholar 

  13. de Hoog P, Louwerse MJ, Gamez P, Pitie M, Baerends EJ, Meunier B, Reedijk J (2008) Eur J Inorg Chem 2008:612–619

    Article  CAS  Google Scholar 

  14. Boldron C, Ross SA, Pitie M, Meunier B (2002) Bioconjugate Chem 13:1013–1020

    Article  CAS  Google Scholar 

  15. Jin Y, Cowan JA (2005) J Am Chem Soc 127:8408–8415

    Article  CAS  Google Scholar 

  16. Barve A, Kumbhar A, Bhat M, Joshi B, Butcher R, Sonawane U, Joshi R (2009) Inorg Chem 48:9120–9132

    Article  CAS  Google Scholar 

  17. Tu C, Shao Y, Gan N, Xu D, Guo ZJ (2004) Inorg Chem 43:4761–4766

    Article  CAS  Google Scholar 

  18. Gonzalez-Alvarez M, Alzuet G, Borras J, Pitie M, Meunier B (2003) J Biol Inorg Chem 8:644–652

    Article  CAS  Google Scholar 

  19. Humphreys KJ, Karlin KD, Rokita SE (2001) J Am Chem Soc 123:5588–5589

    Article  CAS  Google Scholar 

  20. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  21. Yao S, Plastaras JP, Marzilli LG (1994) Inorg Chem 33:6061–6077

    Article  CAS  Google Scholar 

  22. Branco RJF, Fernandes PA, Ramos MJ (2006) J Phys Chem B 110:16754–16762

    Article  CAS  Google Scholar 

  23. Wang YR, Zhu YY, Wang Y, Chen GJ (2011) J Mol Recognit 24:981–994

    Article  Google Scholar 

  24. Zhu YY, Su YW, Li XC, Wang Y, Chen GJ (2008) Chem Phys Lett 455:354–360

    Article  CAS  Google Scholar 

  25. Zhu YY, Wang Y, Chen GJ (2009) J Phys Chem B 113:839–848

    Article  CAS  Google Scholar 

  26. Zhu YY, Wang Y, Chen GJ (2009) Nucleic Acids Res 37:5930–5942

    Article  CAS  Google Scholar 

  27. Zhu YY, Wang Y, Chen GJ, Zhan CG (2009) Theor Chem Acc 122:167–178

    Article  CAS  Google Scholar 

  28. Xue T, Cui S, Wang Y, Yang B, Chen G (2014) Theor Chem Acc 134:1603

    Article  CAS  Google Scholar 

  29. Hæffner F, Brinck T, Haeberlein M, Moberg C (1997) J Mol Struct Theochem 397:39–50

    Article  Google Scholar 

  30. Halgren TA (1996) J Comput Chem 17:520–552

    Article  CAS  Google Scholar 

  31. Halgren TA (1996) J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  32. Halgren TA (1996) J Comput Chem 17:616–641

    Article  CAS  Google Scholar 

  33. Lii J-H, Allinger NL (1991) J Comput Chem 12:186–199

    Article  CAS  Google Scholar 

  34. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  35. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  36. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  37. Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) J Phys Chem A 103:3596–3607

    Article  CAS  Google Scholar 

  38. Yang L, Tan C-H, Hsieh M-J, Wang J, Duan Y, Cieplak P, Caldwell J, Kollman PA, Luo R (2006) J Phys Chem B 110:13166–13176

    Article  CAS  Google Scholar 

  39. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  40. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  41. Beveridge DL, McConnell KJ (2000) Curr Opin Struc Biol 10:182–196

    Article  CAS  Google Scholar 

  42. Cheatham TE III (2004) Curr Opin Struc Biol 14:360–367

    Article  CAS  Google Scholar 

  43. Giudice E, Lavery R (2002) Acc Chem Res 35:350–357

    Article  CAS  Google Scholar 

  44. Orozco M, Perez A, Noy A, Luque FJ (2003) Chem Soc Rev 32:350–364

    Article  CAS  Google Scholar 

  45. Pérez A, Blas JR, Rueda M, López-Bes JM, de la Cruz X, Orozco M (2005) J Chem Theory Comput 1:790–800

    Article  CAS  Google Scholar 

  46. Thiel W, Voityuk AA (1996) J Phys Chem 100:616–626

    Article  CAS  Google Scholar 

  47. Allured VS, Kelly CM, Landis CR (1991) J Am Chem Soc 113:1–12

    Article  CAS  Google Scholar 

  48. Cundari TR, Fu W, Moody EW, Slavin LL, Snyder LA, Sommerer SO, Klinckman TR (1996) J Phys Chem 100:18057–18064

    Article  CAS  Google Scholar 

  49. Dedieu A (2000) Chem Rev 100:543–600

    Article  CAS  Google Scholar 

  50. Hambley TW, Jones AR (2001) Coord Chem Rev 212:35–59

    Article  CAS  Google Scholar 

  51. Rohmer M-M (1985) Chem Phys Lett 116:44–49

    Article  CAS  Google Scholar 

  52. Rohmer MM, Dedieu A, Veillard A (1983) Chem Phys 77:449–462

    Article  CAS  Google Scholar 

  53. Dedieu A, Rohmer MM, Veillard A (1982) Ab initio calculations of metalloporphyrins. In: Per-Olov L (ed) Advances in quantum chemistry. Academic Press, New York, vol 16, pp 43–95

  54. Comba P, Remenyi R (2003) Coord Chem Rev 238–239:9–20

    Article  CAS  Google Scholar 

  55. Comba P, Remenyi R (2002) J Comput Chem 23:697–705

    Article  CAS  Google Scholar 

  56. Comba P, Kerscher M (2009) Coord Chem Rev 253:564–574

    Article  CAS  Google Scholar 

  57. Marzilli LG, Banaszczyk MG, Hansen L, Kuklenyik Z, Cini R, Taylor A Jr (1994) Inorg Chem 33:4850–4860

    Article  CAS  Google Scholar 

  58. Hansen L, Cini R, Taylor A, Marzilli LG (1992) Inorg Chem 31:2801–2808

    Article  CAS  Google Scholar 

  59. Lipowska M, Hansen L, Cini R, Xu X, Choi H, Taylor AT, Marzilli LG (2002) Inorg Chim Acta 339:327–340

    Article  CAS  Google Scholar 

  60. Cundari TR, Fu W (2000) Inorg Chim Acta 300–302:113–124

    Article  Google Scholar 

  61. Wolohan P, Reichert DE (2007) J Mol Graphics Modell 25:616–632

    Article  CAS  Google Scholar 

  62. Mera-Adasme R, Sadeghian K, Sundholm D, Ochsenfeld C (2014) J Phys Chem B 118:13106–13111

    Article  CAS  Google Scholar 

  63. Sousa SF, Fernandes PA, Ramos MJ (2006) Theor Chem Acc 117:171–181

    Article  CAS  Google Scholar 

  64. Hoops SC, Anderson KW, Merz KM (1991) J Am Chem Soc 113:8262–8270

    Article  CAS  Google Scholar 

  65. Peters MB, Yang Y, Wang B, Füsti-Molnár L, Weaver MN, Merz KM (2010) J Chem Theory Comput 6:2935–2947

    Article  CAS  Google Scholar 

  66. Norrby PO, Brandt P (2001) Coord Chem Rev 212:79–109

    Article  CAS  Google Scholar 

  67. Maple JR, Hwang MJ, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) J Comput Chem 15:162–182

    Article  CAS  Google Scholar 

  68. Nelder JA, Mead R (1965) Comput J 7:308–313

    Article  Google Scholar 

  69. Wardak KR, Tasch U, Charalambides PG (2001) J Manuf Syst 20:33–43

    Article  Google Scholar 

  70. Chetana PR, Rao R, Roy M, Patra AK (2009) Inorg Chim Acta 362:4692–4698

    Article  CAS  Google Scholar 

  71. Patra AK, Nethaji M, Chakravarty AR (2005) Dalton Trans 2005:2798–2804

    Article  CAS  Google Scholar 

  72. Patra AK, Nethaji M, Chakravarty AR (2007) J Inorg Biochem 101:233–244

    Article  CAS  Google Scholar 

  73. Patra AK, Dhar S, Nethaji M, Chakravarty AR (2005) Dalton Trans 2005:896–902

    Article  CAS  Google Scholar 

  74. Deshpande MS, Kumbhar AS, Nather C (2010) Dalton Trans 39:9146–9152

    Article  CAS  Google Scholar 

  75. Barve A, Kumbhar A, Bhat M, Joshi B, Butcher R, Sonawane U, Joshi R (2009) Inorg Chem 48:9120–9132

    Article  CAS  Google Scholar 

  76. Dixit N, Koiri RK, Maurya BK, Trigun SK, Hobartner C, Mishra L (2011) J Inorg Biochem 105:256–267

    Article  CAS  Google Scholar 

  77. Bhat SS, Kumbhar AA, Heptullah H, Khan AA, Gobre VV, Gejji SP, Puranik VG (2011) Inorg Chem 50:545–558

    Article  CAS  Google Scholar 

  78. Patra AK, Bhowmick T, Ramakumar S, Nethaji M, Chakravarty AR (2008) Dalton Trans 2008:6966–6976

    Article  CAS  Google Scholar 

  79. Uma V, Castineiras A, Nair BU (2007) Polyhedron 26:3008–3016

    Article  CAS  Google Scholar 

  80. Maheswari PU, Lappalainen K, Sfregola M, Barends S, Gamez P, Turpeinen U, Mutikainen I, van Wezel GP, Reedijk J (2007) Dalton Trans 2007:3676–3683

    Article  CAS  Google Scholar 

  81. Bodoki A, Hangan A, Oprean L, Alzuet G, Castiñeiras A, Borrás J (2009) Polyhedron 28:2537–2544

    Article  CAS  Google Scholar 

  82. Wang XL, Chao H, Li H, Hong XL, Ji LN, Li XY (2004) J Inorg Biochem 98:423–429

    Article  CAS  Google Scholar 

  83. Hernández-Gil J, Perelló L, Ortiz R, Alzuet G, González-Álvarez M, Liu-González M (2009) Polyhedron 28:138–144

    Article  CAS  Google Scholar 

  84. Banerjee S, Mondal S, Chakraborty W, Sen S, Gachhui R, Butcher RJ, Slawin AMZ, Mandal C, Mitra S (2009) Polyhedron 28:2785–2793

    Article  CAS  Google Scholar 

  85. Dhar S, Chakravarty AR (2003) Inorg Chem 42:2483–2485

    Article  CAS  Google Scholar 

  86. de Souza B, Bortoluzzi AJ, Bortolotto T, Fischer FL, Terenzi H, Ferreira DE, Rocha WR, Neves A (2010) Dalton Trans 39:2027–2035

    Article  Google Scholar 

  87. Xia J, Li S-A, Shi Y-B, Yu K-B, Tang W-X (2001) J Chem Soc Dalton Trans 2001:2109–2115

    Article  CAS  Google Scholar 

  88. Qiao X, Ma ZY, Xie CZ, Xue F, Zhang YW, Xu JY, Qiang ZY, Lou JS, Chen GJ, Yan SP (2011) J Inorg Biochem 105:728–737

    Article  CAS  Google Scholar 

  89. Chaveerach U, Meenongwa A, Trongpanich Y, Soikum C, Chaveerach P (2010) Polyhedron 29:731–738

    Article  CAS  Google Scholar 

  90. Kellett A, O’Connor M, McCann M, McNamara M, Lynch P, Rosair G, McKee V, Creaven B, Walsh M, McClean S, Foltyn A, O’Shea D, Howe O, Devereux M (2011) Dalton Trans 40:1024–1027

    Article  CAS  Google Scholar 

  91. Xu W, Craft JA, Fontenot PR, Barens M, Knierim KD, Albering JH, Mautner FA, Massoud SS (2011) Inorg Chim Acta 373:159–166

    Article  CAS  Google Scholar 

  92. Lahiri D, Majumdar R, Mallick D, Goswami TK, Dighe RR, Chakravarty AR (2011) J Inorg Biochem 105:1086–1094

    Article  CAS  Google Scholar 

  93. Roy M, Dhar S, Maity B, Chakravarty AR (2011) Inorg Chim Acta 375:173–180

    Article  CAS  Google Scholar 

  94. Goswami TK, Gadadhar S, Roy M, Nethaji M, Karande AA, Chakravarty AR (2012) Organometallics 31:3010–3021

    Article  CAS  Google Scholar 

  95. Patra AK, Nethaji M, Chakravarty AR (2005) Dalton Trans 2005:2798–2804

    Article  CAS  Google Scholar 

  96. Patra AK, Roy S, Chakravarty AR (2009) Inorg Chim Acta 362:1591–1599

    Article  CAS  Google Scholar 

  97. Bhat SS, Kumbhar AA, Heptullah H, Khan AA, Gobre VV, Gejji SP, Puranik VG (2011) Inorg Chem 50:545–558

    Article  CAS  Google Scholar 

  98. Deshpande MS, Kumbhar AS, Nather C (2010) Dalton Trans 39:9146–9152

    Article  CAS  Google Scholar 

  99. Dixit N, Koiri RK, Maurya BK, Trigun SK, Höbartner C, Mishra L (2011) J Inorg Biochem 105:256–267

    Article  CAS  Google Scholar 

  100. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  101. Becke AD (1988) Phys Rev A. Gen Phys 38:3098–3100

    Article  CAS  Google Scholar 

  102. Olsson MHM, Ryde U (2001) J Am Chem Soc 123:7866–7876

    Article  CAS  Google Scholar 

  103. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino GZ, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ Gaussian 09, revision c.01. GAUSSIAN 09, Revision C.01 ed.: Gaussian, Inc., Wallingford, CT, 2011

  104. Mulliken RS (1962) J Chem Phys 36:3428–3439

    Article  CAS  Google Scholar 

  105. Chipot C, Maigret B, Rivail JL, Scheraga HA (1992) J Phys Chem 96:10276–10284

    Article  CAS  Google Scholar 

  106. Besler BH, Merz KM, Kollman PA (1990) J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  107. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  108. Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE, III TAD, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) Amber14. AMBER14, Ed.: University of California, San Francisco

  109. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  110. Miyamoto S, Kollman PA (1992) J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  111. Patra AK, Dhar S, Nethaji M, Chakravarty AR (2005) Dalton Trans 2005:896–902

    Article  CAS  Google Scholar 

  112. Jiang Q, Xiao N, Shi P, Zhu Y, Guo Z (2007) Coord Chem Rev 251:1951–1972

    Article  CAS  Google Scholar 

  113. Shi S, Liu J, Li J, Zheng KC, Tan CP, Chen LM, Ji LN (2005) Dalton Trans 2005:2038–2046

    Article  CAS  Google Scholar 

  114. Reichert DE, Norrby P-O, Welch MJ (2001) Inorg Chem 40:5223–5230

    Article  CAS  Google Scholar 

  115. Shuku T, Sugimori K, Sugiyama A, Nagao H, Sakurai T, Nishikawa K (2005) Polyhedron 24:2665–2670

    Article  CAS  Google Scholar 

  116. Bol JE, Buning C, Comba P, Reedijk J, Ströhle M (1998) J Comput Chem 19:512–523

    Article  CAS  Google Scholar 

  117. Pogozelski WK, Tullius TD (1998) Chem Rev 98:1089–1108

    Article  CAS  Google Scholar 

  118. Detmer CA, Pamatong FV, Bocarsly JR (1996) Inorg Chem 35:6292–6298

    Article  CAS  Google Scholar 

  119. Pamatong FV, Detmer CA, Bocarsly JR (1996) J Am Chem Soc 118:5339–5345

    Article  CAS  Google Scholar 

  120. Jin Y, Cowan JA (2005) J Am Chem Soc 127:8408–8415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to thank Professor David A. Case and Dr. He Chen working at Rutgers University for his valuable comments on this paper. The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 21001095) and University Key Research Programs of Department of Education in Henan Province (Grant Nos. 15A150082 and 14A150033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, B., Zhu, Y. et al. Evaluations of AMBER force field parameters by MINA approach for copper-based nucleases. Struct Chem 27, 1449–1464 (2016). https://doi.org/10.1007/s11224-016-0764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0764-3

Keywords

Navigation