Skip to main content
Log in

The accurate wavefunction of the active space of the rhenium dimer resolved using the ab initio Brueckner coupled-cluster method

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Rhenium is a unique metal in the 5d-series of transition metals having the highest boiling point in the periodic table. It is also known to exist in poly-coordinated states with other rhenium atoms. Based on the existence of strikingly unusual states of elements in astrophysical bodies of nebulae, interstellar debris, exoplanets and other part of the universe, a set of ab initio calculations of the rhenium dimer has been conducted to provide detailed description of its molecular properties that are applicable to the astrochemical research. Ab initio calculations and NBO analysis revealed that rhenium forms quintuple bond in its diatomic state and that it displays preferred state of triplet configuration with high-lying electrons. Calculations also revealed that the two states of rhenium dimer vary in their bonding nature. The singlet spin space is composed of five single bonds, while the triplet state comprises four bonds and two additional lone pairs. Interestingly, while these two states vary in subdivision of electrons at the highest d-level, they share the same frequencies while having different zero-point energies. The calculations reveal intrinsic synergy between the atoms composed of natural bond orbitals, the bonding pattern and the thermochemical properties of Re2, all features being of significant importance to physical and chemical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Frazier WE, Lee EW, Donnellan ME, Thompson JJ (1989) Advanced lightweight alloys for aerospace applications. JOM 41:22–26

    Article  CAS  Google Scholar 

  2. Rioja RJ (1998) Fabrication methods to manufacture isotropic Al–Li alloys and products for space and aerospace applications. Mater Sci Eng A 257:100–107

    Article  Google Scholar 

  3. Parsonage T (2000) Beryllium metal matrix composites for aerospace and commercial applications. Mater Sci Technol 16:732–738

    Article  CAS  Google Scholar 

  4. Katagiri H, Saitoh K, Washio T et al (2001) Development of thin film solar cell based on Cu 2 ZnSnS 4 thin films. Sol Energy Mater Sol Cells 65:141–148

    Article  CAS  Google Scholar 

  5. Brabec CJ, Shaheen SE, Winder C et al (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80:1288–1290

    Article  CAS  Google Scholar 

  6. Todorov TK, Reuter KB, Mitzi DB (2010) High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater 22:E156–E159

    Article  CAS  Google Scholar 

  7. Gagliardi L, Roos BO (2005) Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond. Nature 433:848–851

    Article  CAS  Google Scholar 

  8. von Helmolt R, Wecker J, Holzapfel B et al (1993) Giant negative magnetoresistance in perovskitelike La 2/3 Ba 1/3 MnOx ferromagnetic films. Phys Rev Lett 71:2331

    Article  Google Scholar 

  9. Sun S, Murray C, Weller D et al (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  Google Scholar 

  10. Von Ranke P, Gama S, Coelho A et al (2006) Theoretical description of the colossal entropic magnetocaloric effect: application to MnAs. Phys Rev B 73:014415

    Article  Google Scholar 

  11. Luo Q, Wang W (2010) Magnetocaloric effect in rare earth-based bulk metallic glasses. J Alloys Compd 495:209–216

    Article  CAS  Google Scholar 

  12. Werner H, Knowles PJ (1988) An efficient internally contracted multiconfiguration–reference configuration interaction method. J Chem Phys 89:5803–5814

    Article  CAS  Google Scholar 

  13. Cremer D (2013) From configuration interaction to coupled cluster theory: the quadratic configuration interaction approach. Wiley Interdiscip Rev Comput Mol Sci 3:482–503. doi:10.1002/wcms.1131

    Article  CAS  Google Scholar 

  14. Hegarty D, Robb MA (1979) Application of unitary group methods to configuration interaction calculations. Mol Phys 38:1795–1812

    Article  CAS  Google Scholar 

  15. Eade RH, Robb MA (1981) Direct minimization in mc scf theory. The quasi-newton method. Chem Phys Lett 83:362–368

    Article  CAS  Google Scholar 

  16. Yamamoto N, Vreven T, Robb MA et al (1996) A direct derivative MC-SCF procedure. Chem Phys Lett 250:373–378

    Article  CAS  Google Scholar 

  17. Kobayashi R, Handy NC, Amos RD et al (1991) Gradient theory applied to the Brueckner doubles method. J Chem Phys 95:6723–6733

    Article  CAS  Google Scholar 

  18. Schmidt E, Schippers S, Brandau C et al (2007) Electron-ion recombination measurements of Fe7+, Fe8+, Fe13+ motivated by active galactic nuclei X-ray absorption features. IOP Publishing, Bristol, p 223

    Google Scholar 

  19. Weinhold F (2012) Discovering chemistry with natural bond orbitals. John Wiley & Sons

  20. Sadlej-Sosnowska N (2001) Application of natural bond orbital analysis to delocalization and aromaticity in C-substituted tetrazoles. J Org Chem 66:8737–8743

    Article  CAS  Google Scholar 

  21. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  22. Lu T, Manzetti S (2014) Wavefunction and reactivity study of benzo [a] pyrene diol epoxide and its enantiomeric forms. Struct Chem 25:1521–1533

    Article  CAS  Google Scholar 

  23. David L Handbook of Chemistry and Physics, 81st ed. CRC Press, London

  24. Mishra B, Anderson CD, Taylor PR, et al. (2012) CR3 update: recycling of strategic metals. JOM 64(4). doi:10.1007/s11837-012-0317-1

  25. Yam VWW, Lau VCY, Wu LX (1998) Synthesis, photophysical, photochemical and electrochemical properties of rhenium (I) diimine complexes with photoisomerizable pyridyl-azo,-ethenyl or-ethyl ligands. J Chem Soc Dalton Trans 9:1461–1468

    Article  Google Scholar 

  26. Das TK, Jacobs G, Patterson PM et al (2003) Fischer–Tropsch synthesis: characterization and catalytic properties of rhenium promoted cobalt alumina catalysts☆. Fuel 82:805–815

    Article  CAS  Google Scholar 

  27. Lee PHM, Ko C-C, Zhu N, Yam VWW (2007) Metal coordination-assisted near-infrared photochromic behavior: a large perturbation on absorption wavelength properties of N,N-donor ligands containing diarylethene derivatives by coordination to the rhenium (I) metal center. J Am Chem Soc 129:6058–6059

    Article  CAS  Google Scholar 

  28. Gray TG, Rudzinski CM, Meyer EE et al (2003) Spectroscopic and photophysical properties of hexanuclear rhenium (III) chalcogenide clusters. J Am Chem Soc 125:4755–4770

    Article  CAS  Google Scholar 

  29. Gabriel J-CP, Boubekeur K, Uriel S, Batail P (2001) Chemistry of hexanuclear rhenium chalcohalide clusters. Chem Rev 101:2037–2066

    Article  CAS  Google Scholar 

  30. Barnes G (1955) Field emission from rhenium: emission pattern corresponding to hexagonal crystal structure. Phys Rev 97:1579

    Article  CAS  Google Scholar 

  31. Mattheiss L (1966) Band structure and Fermi surface for rhenium. Phys Rev 151:450

    Article  CAS  Google Scholar 

  32. Jeffery RA, Smith E (1966) Deformation twinning in rhenium single crystals. Philos Mag 13:1163–1168. doi:10.1080/14786436608213532

    Article  CAS  Google Scholar 

  33. Leopold DG, Miller TM, Lineberger W (1986) Flowing afterglow negative ion photoelectron spectroscopy of dirhenium. Evidence for multiple bonding in Re2 and Re2. J Am Chem Soc 108:178–179

    Article  CAS  Google Scholar 

  34. Moskovits M, DiLella D, Limm W (1984) Diatomic and triatomic scandium and diatomic manganese: a resonance Raman study. J Chem Phys 80:626–633

    Article  CAS  Google Scholar 

  35. Feng X, Cao T, Zhao L et al (2009) Structural and electronic properties of Ren ({sf n} leq 8) clusters by density-functional theory. Eur Phys J D 50:285–288

    Article  Google Scholar 

  36. Pramann A, Rademann K (2001) Rhenium oxide cluster anions in a molecular beam. Int J Mass Spectrom 209:1–4

    Article  CAS  Google Scholar 

  37. Brueckner K (1954) Nuclear saturation and two-body forces. II. Tensor forces. Phys Rev 96:508

    Article  CAS  Google Scholar 

  38. Kobayashi R, Koch H, Jørgensen P, Lee TJ (1993) Comparison of coupled-cluster and Brueckner coupled-cluster calculations of molecular properties. Chem Phys Lett 211:94–100. doi:10.1016/0009-2614(93)80057-V

    Article  CAS  Google Scholar 

  39. Crawford TD, Schaefer H (2000) An introduction to coupled cluster theory for computational chemists. Rev Comput Chem 14:33–136

    Article  CAS  Google Scholar 

  40. Turney JM, Simmonett AC, Parrish RM et al (2012) Psi4: an open-source ab initio electronic structure program. Wiley Interdiscip Rev Comput Mol Sci 2:556–565

    Article  CAS  Google Scholar 

  41. Schaftenaar G, Noordik JH (2000) Molden: a pre-and post-processing program for molecular and electronic structures*. J Comput Aided Mol Des 14:123–134

    Article  CAS  Google Scholar 

  42. Te Velde G, Bickelhaupt FM, Baerends EJ et al (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  43. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  44. Chiles RA, Dykstra CE (1981) An efficient and accurate approximation to double substitution coupled cluster wavefunctions. Chem Phys Lett 80:69–72

    Article  CAS  Google Scholar 

  45. Neto AC, Jorge F (2013) All-electron double zeta basis sets for the most fifth-row atoms: application in DFT spectroscopic constant calculations. Chem Phys Lett 582:158–162

    Article  Google Scholar 

  46. Allouche A (2011) Gabedit—a graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182

    Article  CAS  Google Scholar 

  47. Patek M Jmol NBO Visualization Helper Program and Gennbo Helper (http://chemgplus.blogspot.com/2013/08/jmol-nbo-visualization-helper.html) and Gennbo Helper (http://chemgplus.blogspot.com/2013/07/gennbo-helper.html)

  48. Schultz NE, Zhao Y, Truhlar DG (2005) Databases for transition element bonding: metal-metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. J Phys Chem A 109:4388–4403

    Article  CAS  Google Scholar 

  49. Moskovits M, DiLella DP (1980) Di-iron and nickeliron. J Chem Phys 73:4917–4924

    Article  CAS  Google Scholar 

  50. Dong J, Hu Z, Craig R et al (1994) Raman spectra of mass-selected cobalt dimers in argon matrices. J Chem Phys 101:9280–9282

    Article  CAS  Google Scholar 

  51. Wang H, Haouari H, Craig R et al (1996) Raman spectra of mass-selected nickel dimers in argon matrices. J Chem Phys 104:3420–3422

    Article  CAS  Google Scholar 

  52. Ram R, Jarman C, Bernath P (1992) Fourier transform emission spectroscopy of the copper dimer. J Mol Spectrosc 156:468–486

    Article  CAS  Google Scholar 

  53. Cossé C, Fouassier M, Mejean T et al (1980) Dititanium and divanadium. J Chem Phys 73:6076–6085

    Article  Google Scholar 

  54. Casey SM, Leopold DG (1993) Negative ion photoelectron spectroscopy of chromium dimer. J Phys Chem 97:816–830

    Article  CAS  Google Scholar 

  55. Schaftenaar G, de Vlieg J (2012) Quantum mechanical polar surface area. J Comput Aided Mol Des 26:311–318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Sherrill group at Georgia Institute of Technology, Atlanta, for their assistance in working on the implementation of the PSI package with the Natural Bond Orbital format.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Manzetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzetti, S., Patek, M. The accurate wavefunction of the active space of the rhenium dimer resolved using the ab initio Brueckner coupled-cluster method. Struct Chem 27, 1071–1080 (2016). https://doi.org/10.1007/s11224-015-0726-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0726-1

Keywords

Navigation