Skip to main content
Log in

Interconversion of host–guest components in supramolecular assemblies of polycarboxylic acids and reduced Schiff bases

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Eight supramolecular assemblies of benzene-1,3,5-tricarboxylic acid (H3BTC) and benzene-1,2,4,5-tetracarboxylic acid (H4BTtC) with reduced Schiff base of flexible backbone having phenolic and pyridyl groups, i.e., 1,2-bis(2-hydroxybenzylamino)ethane, 1,3-bis(2-hydroxybenzylamino)propane, 1,4-bis(2-hydroxybenzylamino)butane and 1,4-bis(4-pyridinylmethylamino)butane have been constructed by proton transfer reaction. H3BTC forms host–guest type assemblies with amines having phenolic functionality, while a layered structure was obtained with pyridyl functionalized amine. H4BTtC also formed host–guest assemblies with the diamines where reduced Schiff base acts as host and acid moiety acts as the guest. Different conformations of the diamines were observed in these assemblies. Theoretical studies were performed to analyze the effect of varied chain lengths of diamines on hydrogen bond interaction energy of the adducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Steed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  2. Lehn J-M (1996) Comprehensive supramolecular chemistry. Pergamon, New York

    Google Scholar 

  3. Beer PD, Gale PA, Smith DK (1999) Supramolecular chemistry. Oxford University Press, New York

    Google Scholar 

  4. Desiraju GR (1995) Angew Chem Int Ed Engl 34:2311

    Article  CAS  Google Scholar 

  5. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  6. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  7. Tongye S, Langan P, French AD, Johnson GP, Gnanakaran S (2009) J Am Chem Soc 131:4786

    Google Scholar 

  8. Zhu SS, Nieger M, Daniels J, Felder T, Kossev I, Schmidt T, Sokolowski M, Vogtle F, Schalley CA (2009) Chem Eur J 15:5040

    Article  CAS  Google Scholar 

  9. Shin JY, Patrick BO, Dolphin D (2008) Cryst Eng Comm 10:960

    Article  CAS  Google Scholar 

  10. Lorieau JL, McDermott AE (2006) J Am Chem Soc 128:11506

    Article  Google Scholar 

  11. Aviles-Moreno JR, Demaison J, Huet TR (2006) J Am Chem Soc 128:10467

    Article  CAS  Google Scholar 

  12. Aakeroy CB, Desper J, Urbina JF (2005) Cryst Eng Comm 7:193

    Article  Google Scholar 

  13. Rentzeperis D, Rippe K, Jovin TM, Marky LA (1992) J Am Chem Soc 114:5926

    Article  CAS  Google Scholar 

  14. Gale PA (2001) Coord Chem Rev 213:79

    Article  CAS  Google Scholar 

  15. Baek J-B, Harris FW (2005) J Polym Sci A Polym Chem 43

  16. Sawanaboori M, Sasanuma Y, Kaito A (2001) Macro-molecules 34:8321

    Article  Google Scholar 

  17. Kovalevsky AY, Ponomarev II, Antipin MY, Ermolenko IG, Shishkin OV (2000) Russ Chem Bull 49:70

    Article  CAS  Google Scholar 

  18. Ajo D, Casarin M, Granozzi G, Busetti V (1981) Tetrahedron 37:3507

    Article  CAS  Google Scholar 

  19. Suh J, Lee SH, Kim SM, Hah SS (1997) Bioorg Chem 25:221

    Article  CAS  Google Scholar 

  20. Beatty AM, Schneider CM, Simpsona AE, Zaher JL (2002) Cryst Eng Comm 4:282

    Article  CAS  Google Scholar 

  21. Sharma CVK, Bauer CB, Rogers RD, Zaworotko MJ (1997) Chem Commun 1559

  22. Biradha K, Dennis D, MacKinnon VA, Sharma CVK, Zaworotko MJ (1998) J Am Chem Soc 120:11894

    Article  CAS  Google Scholar 

  23. Chatterjee S, Pedireddi VR, Ranganathan A, Rao CNR (2000) J Mol Struct 520:107

    Article  CAS  Google Scholar 

  24. Liu R, Mok K-F, Valiyaveettil S (2001) New J Chem 25:890

    Article  CAS  Google Scholar 

  25. Ma B-Q, Coppens P (2003) Chem Commun 2290

  26. Paz FAA, Bond AD, Khimyak YZ, Klinowski J (2002) New J Chem 26:381

    Article  Google Scholar 

  27. Paz FAA, Klinowski J (2003) Cryst Eng Comm 5:238

    Article  CAS  Google Scholar 

  28. Shattock TR, Vishweshwar P, Wang Z, Zaworotko MJ (2005) Cryst Growth Des 6:2046

    Article  Google Scholar 

  29. Dale SH, Elsegood MRJ, Richards SJ (2004) Chem Commun 1278

  30. Vishweshwar P, Beauchamp DA, Zaworotko MJ (2006) Cryst Growth Des 11:2429

    Article  Google Scholar 

  31. Goldberg I, Bernstein J (2007) Chem Commun 132

  32. Santra R, Ghosh N, Biradha K (2008) New J Chem 32:1673

    Article  CAS  Google Scholar 

  33. Santra R, Biradha K (2009) Cryst Growth Des 11:4969

    Article  Google Scholar 

  34. Rajput L, Biradha K (2009) Cryst Growth Des 1:40

    Article  Google Scholar 

  35. Bhattacharya S, Saha BK (2011) Cryst Growth Des 6:2194

    Article  Google Scholar 

  36. Biradha K, Zaworotko MJ (1998) Cryst Eng 1:67

    Article  CAS  Google Scholar 

  37. Sun YQ, Zhang J, Yang GY (2002) Acta Cryst E58:o1100

    Google Scholar 

  38. Arora KK, Pedireddi VR (2003) J Org Chem 68:9177

    Article  CAS  Google Scholar 

  39. Horikoshi R, Nambu C, Mochida T (2004) New J Chem 28:26

    Article  CAS  Google Scholar 

  40. Dale SH, Elsegood MRJ, Hemmings M, Wilkinson AL (2004) Cryst Eng Comm 6:207

    Article  CAS  Google Scholar 

  41. Du M, Zhang ZH, Zhao XJ (2005) Cryst Growth Des 5:1247

    Article  CAS  Google Scholar 

  42. Fabelo O, Canadillas-Delgado L, Delgado FS, Lorenzo-Luis P, Laz MM, Julve M, Ruiz-Perez C (2005) Cryst Growth Des 5:1163

    Article  CAS  Google Scholar 

  43. Du M, Zhang ZH, Wang XG, Wu HF, Wang Q (2006) Cryst Growth Des 6:1867

    Article  CAS  Google Scholar 

  44. Arora KK, Talwelkar MS, Pedireddi VR (2009) New J Chem 33:57

    Article  CAS  Google Scholar 

  45. Basu T, Sparkes HA, Mondal R (2009) Cryst Growth Des 9:5164

    Article  CAS  Google Scholar 

  46. Rajput L, Jana N, Biradha K (2010) Cryst Growth Des 10:4565

    Article  CAS  Google Scholar 

  47. Ji B-M, Deng D-S, Ma N, Miao S-B, Yang X-G, Ji L-G, Du M (2010) Cryst Growth Des 10:3060

    Article  CAS  Google Scholar 

  48. Lloyd GO, Bredenkamp MW, Barbour LJ (2005) Chem Commun 32:4053

    Article  Google Scholar 

  49. Perrin DD, Armarego WL, Perrin DR (1980) Purification of laboratory chemicals, 2nd edn. Pergamon, New York

    Google Scholar 

  50. Biswas A, Drew MGB, Gomez-Garcia CJ, Ghosh A (2010) Inorg Chem 49:8155

    Article  CAS  Google Scholar 

  51. Sheldrick GM (1996) SADABS. University of Göttingen, Germany

    Google Scholar 

  52. Sheldrick GM (1990) Acta Cryst A46:467

    Article  CAS  Google Scholar 

  53. Sheldrick GM, SHELXTL-NT 2000 version 6.12, reference manual, University of Göttingen, Göttingen, Germany

  54. Brandenburg K (2000) Diamond: visual crystal structure information system (Version 2.1d). Crystal Impact GbR, Bonn, Germany

  55. Mercury, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, United Kingdom. http://www.ccdc.cam.ac.uk/

  56. Gaussian 03 (2004) Rev. C.02, Gaussian, Inc., (2004) Wallingford CT

  57. Hariharan PC, Pople JA (1972) Theor Chem Acta 28:213

    Article  Google Scholar 

  58. Frisch A, Nielsen AB, Holder AJ (2003) Gauss view user’s manual. Gaussian Inc., Wallingford CT

    Google Scholar 

  59. http://www.chemcraftprog.com/

  60. Bis JA, Zaworotko MJ (2005) Cryst Growth Des 5:1169

    Article  CAS  Google Scholar 

  61. Singh UP, Tomar K, Kashyap S (2015) Cryst Eng Comm 17:1421

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge CSIR, New Delhi, India, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udai P. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17058 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, U.P., Tomar, K. & Kashyap, S. Interconversion of host–guest components in supramolecular assemblies of polycarboxylic acids and reduced Schiff bases. Struct Chem 27, 1027–1040 (2016). https://doi.org/10.1007/s11224-015-0699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0699-0

Keywords

Navigation