Skip to main content
Log in

Hydration of DNA-binding biological active compounds: EHF dielectrometry and molecular modeling results

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We report hydration properties of several DNA-binding ligands (pharmaceutical drug caffeine; mutagens proflavine, ethidium bromide, propidium iodide; polyamines putrescine, spermine), which are able to interact with DNA in different modes via external binding, intercalation or minor groove binding. We show that the detection of the bound water molecules and the estimation of their amount in aqueous solutions of ligands can be efficiently carried out using the measurements of complex dielectric permittivity of the solutions in the millimeter range of radio waves. Our dielectrometric data are combined with the results of the molecular modeling including quantum chemical calculations and Monte Carlo simulations. We show that number of water molecules able to form hydrogen bonds with donor–acceptor groups of ligands correlates with hydration numbers taken from the literature or obtained in EHF dielectrometry experiment. The latter indicates that the EHF dielectrometry method is sensitive for the tightly bound water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haq I (2002) Thermodynamics of drug–DNA interactions. Arch Biochem Biophys 403:1–15. doi:10.1016/S0003-9861(02)00202-3

    Article  CAS  Google Scholar 

  2. David-Eden H, Mankin AS, Mandel-Gutfreund Y (2010) Structural signatures of antibiotic binding sites on the ribosome. Nucl Acids Res 38:5982–5994. doi:10.1093/nar/gkq411

    Article  CAS  Google Scholar 

  3. Han F, Chalikian TV (2003) Hydration changes accompanying nucleic acid intercalation reactions: volumetric characterizations. J Am Chem Soc 125:7219–7229. doi:10.1021/ja030068p

    Article  CAS  Google Scholar 

  4. Mancera RL (2007) Molecular modeling of hydration in drug design. Curr Opin Drug Discov Devel 10(3):275–280

    CAS  Google Scholar 

  5. Lane AN, Jenkins TC (2000) Thermodynamics of nucleic acids and their interactions with ligands. Q Rev Biophys 33(3):255–306

    Article  CAS  Google Scholar 

  6. Shi X, Macgregor RB Jr (2007) Volume and hydration changes of DNA–ligand interactions. Biophys Chem 125:471–482. doi:10.1016/j.bpc.2006.10.011

    Article  CAS  Google Scholar 

  7. Marky LA, Kupke DW, Kankia BI (2001) Volume changes accompanying interaction of ligands with nucleic acids. Meth Enzymol 340:149–165. doi:10.1016/S0076-6879(01)40421-6

    Article  CAS  Google Scholar 

  8. Thomas JR, Hergenrother PJ (2008) Targeting RNA with small molecules. Chem Rev 108:1172–1224. doi:10.1021/cr0681546

    Article  Google Scholar 

  9. Baron JJ, Roberts H (1981) Caffeine. Springer, Berlin

    Google Scholar 

  10. Dusenbery DV, Uretz RB (1972) The interaction of acridine dyes with the densely packed DNA of bacteriophage. Biophys J 12:1056–1065. doi:10.1016/S0006-3495(72)86143-5

    Article  CAS  Google Scholar 

  11. Girousi STh, Alexaidou DK, Ioannou AK (2008) An electroanalytical study of the drug proflavine. Microchim Acta 160:435–439. doi:10.1007/s00604-007-0812-1

    Article  CAS  Google Scholar 

  12. Finkelstein T, Weinstein IB (1967) Proflavine binding to transfer ribonucleic acid, synthetic ribonucleic acids and deoxyribonucleic acid. J Biol Chem 242(17):3763–3768

    CAS  Google Scholar 

  13. Neidle S, Pearl LH, Herzyk P, Berman HM (1988) A molecular model for proflavine-DNA intercalation. Nucl Acids Res 16:8999–9016. doi:10.1093/nar/16.18.8999

    Article  CAS  Google Scholar 

  14. Huang Q, Fu WL (2005) Comparative analysis of the DNA staining efficiencies of different fluorescent dyes in preparative agarose gel electrophoresis. Clin Chem Lab Med 43:841–842. doi:10.1515/CCLM.2005.141

    Article  CAS  Google Scholar 

  15. Waring MJ (1965) Complex formation between ethidium bromide and nucleic acids. J Mol Biol 13:269–282. doi:10.1016/S0022-2836(65)80096-1

    Article  CAS  Google Scholar 

  16. Lecoeur H (2002) Nuclear apoptosis detection by flow cytometry: influence of endogenous endonucleases. Exp Cell Res 277(1):1–14. doi:10.1006/excr.2002.5537

    Article  CAS  Google Scholar 

  17. Stevenson P, Sones KR, Gicheru MM, Mwangi EK (1995) Comparison of isometamidium chloride and homidium bromide as prophylactic drugs for trypanosomiasis in cattle at Nguruman, Kenya. Acta Trop 59:257–258. doi:10.1016/0001-706X(94)00080-K

    Article  Google Scholar 

  18. Lawrence SA (2004) Amines: synthesis, properties and applications. Cambridge University Press, Cambridge. ISBN 978-0-521-78284-5

    Google Scholar 

  19. Morrison JC, Filer CN (2015) Tritiation and characterization of several polyamine natural products. Appl Radiat Isot 98:71–73. doi:10.1016/j.apradiso.2015.01.017

    Article  CAS  Google Scholar 

  20. Zhang L, Zhao M, Yuan JL (2013) Related research progress on Alzheimer’s disease and its microecological control. Zhongguo Weishengtaixue Zazhi 25:861–865

    CAS  Google Scholar 

  21. Battaglia V, De Stefano Shields C, Murray-Stewart T, Casero RA (2014) Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemo-prevention. Amino Acids 46:511–519. doi:10.1007/s00726-013-1529-6

    Article  CAS  Google Scholar 

  22. Mendez JD, Palomar-Morales M (1999) Preventionby l-arginine and polyamines of delayed development and embryo toxicity caused by chemically-induced diabetes in rats. Reprod Toxicol 13:501–509. doi:10.1016/S0890-6238(99)00039-8

    Article  CAS  Google Scholar 

  23. Liquori AM, Constantino L, Crescenzi V, Elia V, Giglio E, Puliti R, De Santis Savino M, Vitagliano V (1967) Complexes between DNA and polyamines: a molecular model. J Mol Biol 24:113–122. doi:10.1016/0022-2836(67)90094-0

    Article  CAS  Google Scholar 

  24. Vijayanathan V, Thomas T, Antony T (2004) Formation of DNA nanoparticles in the presence of novel polyamine analogues: a laser light scattering and atomic force microscopic study. Nucl Acids Res 32:127–134. doi:10.1093/nar/gkg936

    Article  CAS  Google Scholar 

  25. Rider JE, Hacker A, Mackintosh CA, Pegg AE, Woster PM, Casero RA Jr (2007) Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240. doi:10.1007/s00726-007-0513-4

    Article  CAS  Google Scholar 

  26. Kashpur VA, Maleev VYA, Shchegoleva TYU (1976) Globular protein hydration by a differential dielectrometric method. Mol Biol 10:568–575

    CAS  Google Scholar 

  27. Kashpur VA, Maleev VYA, Khorunzhaya OV (2010) Application of differential EHF dielectrometry in molecular biophysics. Telecommun Radio Eng 69(16):1473–1489. doi:10.1615/TelecomRadEng.v69.i16.80

    Article  Google Scholar 

  28. Craig DQM (1995) Dielectric analysis of pharmaceutical systems. Taylor & Francis, London. ISBN 0-13-210279-X

    Google Scholar 

  29. Danilov VI, Tolokh IS (1984) Nature of the stacking of nucleic acids bases in water: a Monte Carlo simulation. J Biomol Struct Dyn 2:119–130. doi:10.1080/07391102.1984.10507551

    Article  CAS  Google Scholar 

  30. Poltev VI, Malenkov GG, Gonzalez EJ, Teplukhin AV, Rein R, Shibata M, Miller JH (1996) Modeling DNA hydration: comparison of calculated and experimental hydration properties of nucleic acid bases. J Biomol Struct Dyn 13:717–726. doi:10.1080/07391102.1996.10508884

    Article  CAS  Google Scholar 

  31. Alderfer JL, Danilov VI, Poltev VI, Slyusarchuk ON (1999) A study of the hydration of deoxydinucleoside monophosphates containing thymine, uracil and its 5-halogen derivatives: Monte Carlo simulation. J Biomol Struct Dyn 16:1107–1117. doi:10.1080/07391102.1999.10508319

    Article  CAS  Google Scholar 

  32. Shestopalova AV (2002) Hydration of nucleic acids components in dependence of nucleotide composition and relative humidity: a Monte Carlo simulation. Eur Phys J D 20:331–337. doi:10.1140/epjd/e2002-00145-8

    Article  CAS  Google Scholar 

  33. Maleev VYA, Semenov MA, Kashpur VA, Bolbukh TV, Shestopalova AV, Anischenko DB (2002) Structure and hydration of polycytidylic acid from the data of infrared spectroscopy, EHF dielectrometry and computer modeling. J Mol Struct 605:51–61. doi:10.1016/S0022-2860(01)00666-4

    Article  CAS  Google Scholar 

  34. Danilov VI, Shestopalova AV (1989) Hydrophobic effect in biological associates: a Monte Carlo simulation of caffeine molecules stacking. Int J Quantum Chem 35:103–112. doi:10.1002/qua.560350105

    Article  CAS  Google Scholar 

  35. Danilov VI, Slyusarchuk ON, Poltev VI, Alderfer JL, Wollman RM, Brickmann JA, Lautenschlager P (1992) A Monte Carlo simulation of hydration of xanthine-derivatives and their stacked forms. J Biomol Struct Dyn 9:1239–1252. doi:10.1080/07391102.1992.10507989

    Article  CAS  Google Scholar 

  36. Maleev VYA, Semenov MA, Kruglova EB, Bolbukh TV, Gasan AI, Bereznyak EG, Shestopalova AV (2003) Spectroscopic and calorimetric study of DNA interaction with a new series of actinocin derivatives. J Mol Struct 645:145–158. doi:10.1016/S0022-2860(02)00541-0

    Article  CAS  Google Scholar 

  37. Ellison WJ, Lamkaouchi K, Moreau JM (1996) Water: a dielectric reference. J Mol Liq 68:171–279. doi:10.1016/0167-7322(96)00926-9

    Article  CAS  Google Scholar 

  38. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. doi:10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  39. Neese F (2012) The ORCA Program system. Comput Mol Sci 2(1):73–78. doi:10.1002/wcms.81

    Article  CAS  Google Scholar 

  40. Kostjukov VV, Khomytova NM, Hernandez Santiago AA, Licona Ibarra R, Davies DB, Evstigneev MP (2011) Calculation of the electrostatic charges and energies for intercalation of aromatic drug molecules with DNA. Int J Quantum Chem 111:711–721. doi:10.1002/qua.22451

    Article  CAS  Google Scholar 

  41. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145. doi:10.1002/jcc.540050204

    Article  CAS  Google Scholar 

  42. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11(3):361–373. doi:10.1002/jcc.540110311

    Article  CAS  Google Scholar 

  43. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  CAS  Google Scholar 

  44. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092. doi:10.1063/1.1699114

    Article  CAS  Google Scholar 

  45. Poltev VI, Grokhlina TI, Malenkov GG (1984) Hydration of nucleic acid bases studied using novel atom–atom potential functions. J Biomol Struct Dyn 2:413–429. doi:10.1080/07391102.1984.10507576

    Article  CAS  Google Scholar 

  46. Gonzalez E, Cedeno FI, Teplukhin AV, Malenkov GG, Poltev VI (2000) Refinement of methodology for simulation of nucleic acid hydration. Rev Mex Fis 46:142–147

    CAS  Google Scholar 

  47. Teplukhin AV, Malenkov GG, Poltev VI (1998) Monte Carlo simulation of DNA fragment hydration in the presence of alkaline cations using novel atom–atom potential functions. J Biomol Struct Dyn 16:289–300. doi:10.1080/07391102.1998.10508247

    Article  CAS  Google Scholar 

  48. Poltev VI, Grokhlina TI (2002) A molecular mechanics approach to structure-activity relations in DNA-ligands. Anti-cancer drug design: biological and biophysical aspects of synthetic phenoxazone derivatives. SEVNTU Press, Sevastopol, pp 187–241

    Google Scholar 

  49. Malenkov G (2009) Liquid water and ices: understanding the structure and physical properties. J Phys: Condens Matter 21(28):283101. doi:10.1088/0953-8984/21/28/283101

    Google Scholar 

  50. Abraham FF (1974) Monte Carlo simulation of physical clusters of water molecules. J Chem Phys 61:1221–1225. doi:10.1063/1.1681997

    Article  CAS  Google Scholar 

  51. Abraham FF (1982) Statistical surface physics: a perspective via computer simulation of microclusters, interfaces and simple films. Rep Prog Phys 45:1113–1162. doi:10.1088/0034-4885/45/10/002

    Article  Google Scholar 

  52. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  53. Mashimo S, Kuwabara S, Yagihara S (1987) Dielectric relaxation time and structure of bound water in biological materials. J Phys Chem 91:6337–6338. doi:10.1021/j100309a005

    Article  CAS  Google Scholar 

  54. Buchanan TJ, Haggis GM, Hasted JB (1952) The dielectric estimation of protein hydration. Proc R Soc A 213:379–391. doi:10.1098/rspa.1952.0132

    Article  CAS  Google Scholar 

  55. Wei Y, Sridhar S (1992) Biological applications of a technique for broadband complex permittivity measurements. IEEE MTT-S Digest 3:1271–1274. doi:10.1109/MWSYM.1992.188233

    Google Scholar 

  56. Akhadov YY (1977) Dielectric properties of binary solutions. Nauka, Moscow

    Google Scholar 

  57. Wachter W, Kunz W, Buchner R (2005) Is there an anionic Hofmeister effect on water dynamics? Dielectric spectroscopy of aqueous solutions of NaBr, NaI, NaNO3, NaClO4, and NaSCN. J Phys Chem A 109:8675–8683. doi:10.1021/jp053299m

    Article  CAS  Google Scholar 

  58. Shestopalova AV (2006) The investigation of the association of caffeine and actinocin derivatives in aqueous solution: a molecular dynamics simulation. J Mol Liq 127(1–3):113–117. doi:10.1016/j.molliq.2006.03.045

    Article  CAS  Google Scholar 

  59. Tavagnacco L, Schnupf U, Mason PE, Saboungi ML, Cesàro A, Brady JW (2011) Molecular dynamics simulation studies of caffeine aggregation in aqueous solution. J Phys Chem B 115(37):10957–10966. doi:10.1021/jp2021352

    Article  CAS  Google Scholar 

  60. Bhanita Sh, Sandip P (2013) Effects of dilute aqueous NaCl solution on caffeine aggregation. J Chem Phys 139:194504. doi:10.1063/1.4830414

    Article  Google Scholar 

  61. Kentsis A, Mezei M, Osman R (2003) MC-PHS: A Monte Carlo implementation of the primary hydration shell for protein folding and design. Biophys J 84(2):805–815. doi:10.1016/S0006-3495(03)74900-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported in part by the SCST Programme of Implementation and Usage of GRID technologies for 2009–2013. The calculations were carried out using clusters of Institute for Scintillation Materials NASU and Institute for Radiophysics and Electronics NASU. The research which results are presented in the present paper was fulfilled due to the collaboration with Prof. O. Shishkin. The authors also thank Roman Zubatyuk (ISMA NASU) for the assistance in quantum chemical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Victorovna Shestopalova.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestopalova, A.V., Pesina, D.A., Kashpur, V.A. et al. Hydration of DNA-binding biological active compounds: EHF dielectrometry and molecular modeling results. Struct Chem 27, 159–173 (2016). https://doi.org/10.1007/s11224-015-0695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0695-4

Keywords

Navigation