Skip to main content
Log in

Temperature evolution of cluster structure in n-hexanol, isolated in Ar and N2 matrices and in condensed states

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Matrix isolation method allows investigating individual molecules and clusters. Basing on the registered spectra, one can obtain the information on cluster structures in n-hexanol and the changing of these structures during phase transitions. Using quantum chemical methods, the energy of hydrogen bonds for clusters of different sizes and their spatial parameters were calculated. A comparison of experimentally registered and theoretically calculated IR spectra of n-hexanol was made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pimentel GC, McClellan AL (1960) The hydrogen bond. W. H. Freeman, San Francisco

    Google Scholar 

  2. Suhm MA (2009) Hydrogen bond dynamic in alcohols clusters. Adv Chem Phys 142:1–57

    CAS  Google Scholar 

  3. Kaplan IG (1982) Introduction into theory of intermolecular interactions. Nauka, Moscow

    Google Scholar 

  4. Pogorelov V, Doroshenko I, Uvdal P, Balevicius V, Sablinskas V (2010) Mol Phys 108:2165

    Article  CAS  Google Scholar 

  5. Doroshenko IY, Pogorelov VY, Pitsevich GA, Sablinskas V (2012) The cluster structure of liquid alcohols: study by vibrational spectroscopy. LAP LAMBERT Academic Publishing, Germany (in Russian)

    Google Scholar 

  6. Pogorelov V, Doroshenko I, Uvdal P, Balevicius V, Sablinskas V (2010) Mol Phys 108(17):2165–2170

    Article  CAS  Google Scholar 

  7. Doroshenko I, Pogorelov V, Sablinskas V, Balevicius V (2010) J Mol Liq 157:142–145

    Article  CAS  Google Scholar 

  8. Balevicius V, Sablinskas V, Doroshenko I, Pogorelov V (2011) Ukr J Phys 56:855–860

    CAS  Google Scholar 

  9. Mielke Z, Coussan S, Mierzwicki K (2006) J Phys Chem 110:4712–4718

    Article  CAS  Google Scholar 

  10. Perchard JP, Mielke Z (2001) Chem Phys 264:221–234

    Article  CAS  Google Scholar 

  11. Perchard JP, Romain F, Bouteiller Y (2008) Chem Phys 343:35–46

    Article  CAS  Google Scholar 

  12. Pitsevich GA, Doroshenko IY, Pogorelov VY, Umrejko DS (2011) J Spectrosc Dyn 1:9

    Google Scholar 

  13. Pitsevich GA, Malevich AE (2012) Am J Chem 2:312–321

    Article  CAS  Google Scholar 

  14. Puranic PG (1957) J Chem Phys 26:601–603

    Article  Google Scholar 

  15. Pitsevich GA, Doroshenko IY, Pogorelov VY, Kozlovskaya EN, Borzda T, Sablinskas V, Balevicius V (2014) Vib Spectrosc 72:26–32

    Article  CAS  Google Scholar 

  16. Ebukuro T, Takami A, Oshima Y, Koda S (1999) J Supercrit Fluids 15:73–78

    Article  CAS  Google Scholar 

  17. Wood RW, Collins G (1932) Phys Rev 42:386

    Article  CAS  Google Scholar 

  18. Pogorelov V, Yevglevsky A, Doroshenko I, Berezovchuk L, Zhovtobryuch Y (2008) Superlattices Microstruct 44:571–576

    Article  CAS  Google Scholar 

  19. Kashtanov S, Augustson A, Rubensson J, Nordgren J, Agren H, Guo J, Luo Y (2005) Phys Rev B 71:104205–104213

    Article  Google Scholar 

  20. Tukhvatullin FH, Pogorelov VE, Jumabaev A, Hushvaktov H, Absanov A, Shaymanov A (2008) J Mol Struct 881:52–56

    Article  CAS  Google Scholar 

  21. Czeslik C, Jonas J (1999) Chem Phys Lett 302:633–638

    Article  CAS  Google Scholar 

  22. Pitsevich GA, Doroshenko IY, Pogorelov VE, Shablinskas V, Balevichus V, Kozlovskaya EN (2012) Am J Chem 2(4):218–227

    Article  CAS  Google Scholar 

  23. Fileti E, Castro M, Canuto S (2008) Chem Phys Lett 452:54–58

    Article  CAS  Google Scholar 

  24. Golub P, Borzda T, Doroshenko I, Pogorelov V (2012) J Spectrosc Dyn 2:20

    Google Scholar 

  25. Scott AP, Radom L (1996) J Phys Chem 16502:4–10

    Google Scholar 

Download references

Acknowledgments

The work was partly supported by Swedish Research Council (Grant No. 348-2013-6720).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Doroshenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishchuk, O., Doroshenko, I., Sablinskas, V. et al. Temperature evolution of cluster structure in n-hexanol, isolated in Ar and N2 matrices and in condensed states. Struct Chem 27, 243–248 (2016). https://doi.org/10.1007/s11224-015-0692-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0692-7

Keywords

Navigation