Skip to main content
Log in

The 8-oxo-dGTP interaction with human DNA polymerase β: two patterns of ligand behavior

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The behavior of 8-oxo-dGTP molecule in the area of the active site of human DNA polymerase β was investigated using molecular dynamics (MD) calculation. The principle phenomenon revealed as investigation results is existence of two cardinally different models of behavior inherent in 8-oxo-dGTP molecule. In the several cases, 8-oxo-dGTP stably stays in DNA polymerase active site, “keeps in touch” with template nucleotide and maintains the hydrogen bonds with it (stable behavior). In other cases, the ligand molecules lose the connections with template dA and start to migrate inside of enzyme space (migrate behavior). The 8-oxo-dGTP in cases of migrate behavior is still in DNA polymerase space at least over 100 ns and prevents transit of DNA polymerase from closed to open conformation as well as the further binding of incoming dNTP. This observation lets a possibility to consider it as natural inhibitor/regulator of DNA pol β activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Batra Jena NR (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37:503–517

    Article  Google Scholar 

  2. Cadet J, Wagner JR (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. CSH Perspect Biol 5:a012559

    Google Scholar 

  3. Cadet J, Douki T, Gasparutto D, Ravanat JL (2003) Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res 531:5–23

    Article  CAS  Google Scholar 

  4. Nakabeppu Y, Sakumi K, Sakamoto K, Tsuchimoto D, Tsuzuki T, Nakatsu Y (2006) Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids. Biol Chem 387:373–379

    Article  CAS  Google Scholar 

  5. Markkanen E, Hübscher U, van Loon B (2012) Regulation of oxidative DNA damage repair: the adenine: 8-oxo-guanine problem. Cell Cycle 11:1070–1075

    Article  CAS  Google Scholar 

  6. Eoff RL, Irimia A, Angel KC, Egli M, Guengerich FP (2007) Hydrogen bonding of 7,8-dihydro-8-oxodeoxyguanosine with a charged residue in the little finger domain determines miscoding events in Sulfolobus solfataricus DNA polymerase Dpo4. J Biol Chem 282:19831–19843

    Article  CAS  Google Scholar 

  7. Van Loon B, Markkanen E, Hübscher U (2010) Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst) 9:604–616

    Article  Google Scholar 

  8. Batra VK, Shock DD, Beard WA, McKenna CE, Wilson SH (2012) Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion. PNAS 109:113–118

    Article  CAS  Google Scholar 

  9. Beard WA, Batra VK, Wilson SH (2010) DNA polymerase structure-based insight on the mutagenic properties of 8-oxoguanine. Mutat Res 703:18–23

    Article  CAS  Google Scholar 

  10. Katafuchi A, Nohmi T (2010) DNA polymerases involved in the incorporation of oxidized nucleotides into DNA: their efficiency and template base preference. Mutat Res 703:24–31

    Article  CAS  Google Scholar 

  11. Shimizu M, Gruz P, Kamiya H, Kim SR, Pisani FM, Masutani C, Kanke Y, Harashima H, Hanaoka F, Nohmi T (2003) Erroneous incorporation of oxidized DNA precursors by Y-family DNA polymerases. EMBO Rep 4:269–273

    Article  CAS  Google Scholar 

  12. Shimizu M, Gruz P, Kamiya H, Masutani C, Xu Y, Usui Y, Sugiyama H, Harashima H, Hanaoka F, Nohmi T (2007) Efficient and erroneous incorporation of oxidized DNA precursors by human DNA polymerase η. Biochemistry 46:5515–5522

    Article  CAS  Google Scholar 

  13. Einolf HJ, Guengerich FP (2001) Fidelity of nucleotide insertion at 8-oxo-7,8-dihydroguanine by mammalian DNA polymerase delta steady-state and pre-steady-state kinetic analysis. J Biol Chem 276:3764–3771

    Article  CAS  Google Scholar 

  14. Kunkel TA (2004) DNA replication fidelity. J Biol Chem 279:16895–16898

    Article  CAS  Google Scholar 

  15. Berdis AJ (2009) Mechanisms of DNA polymerases. Chem Rev 109:2862–2879

    Article  CAS  Google Scholar 

  16. Miller H, Prasad R, Wilson SH, Johnson F, Grollman AP (2000) 8-oxodGTP incorporation by DNA polymerase β is modified by active-site residue Asn279. Biochemistry 39:1029–1033

    Article  CAS  Google Scholar 

  17. Brown JA, Duym WW, Fowler JD, Suo Z (2007) Single-turnover kinetic analysis of the mutagenic potential of 8-oxo-7,8-dihydro-2?-deoxyguanosine during gap-filling synthesis catalyzed by human DNA polymerases λ and β. J Mol Biol 367:1258–1269

    Article  CAS  Google Scholar 

  18. Katafuchi A, Sassa A, Niimi N, Gruz P, Fujimoto H, Masutani C, Hanaoka F, Ohta T, Nohmi T (2010) Critical amino acids in human DNA polymerases η and κ involved in erroneous incorporation of oxidized nucleotides. Nucl Acids Res 38:859–867

    Article  CAS  Google Scholar 

  19. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242

    Article  CAS  Google Scholar 

  20. Batra VK, Beard WA, Hou EW, Pedersen LC, Prasad R, Wilson SH (2010) Mutagenic conformation of 8-oxo-7,8-dihydro-2′-dGTP in the confines of a DNA polymerase active site. Nat Struct Mol Biol 17:889–890

    Article  CAS  Google Scholar 

  21. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB 3rd, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucl Acids Res 35(Web Server issue):W375–W383

    Article  Google Scholar 

  22. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66(Pt 1):12–21

    Article  CAS  Google Scholar 

  23. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  24. Johansson MU, Zoete V, Michielin O, Guex N (2012) Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics 13:173

    Article  Google Scholar 

  25. Hess B, Kutzner C, van der Spoel D, Lindhal E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  26. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 45: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  Google Scholar 

  27. MacKerell AD Jr, Banavali N, Foloppe N (2000) -2001) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265

    Article  CAS  Google Scholar 

  28. Mackerell AD Jr, Feig M, Brooks CL 3rd (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    Article  CAS  Google Scholar 

  29. Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32:2359–2368

    Article  CAS  Google Scholar 

  30. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminformatics 3:33

    Article  Google Scholar 

  31. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  32. Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, non-polarizable potential functions. J Chem Phys 112:8910–8922

    Article  CAS  Google Scholar 

  33. Das B, Meirovitch H, Navon IM (2003) Performance of hybrid methods for large-scale unconstrained optimization as applied to models of proteins. J Comput Chem 24:1222–12231

    Article  CAS  Google Scholar 

  34. Hockney RW, Goel SP, Eastwood J (1974) Quiet high resolution computer models of a plasma. J Comput Phys 14:148–158

    Article  Google Scholar 

  35. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  36. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  Google Scholar 

  37. Maiorov VN, Crippen GM (1995) Size-independent comparison of protein three-dimensional structures. Proteins 22:273–283

    Article  CAS  Google Scholar 

  38. Hübscher U, Spadari S, Villani G (2010) Maga G DNA Polymerases: discovery, characterization and functions in cellular DNA transactions. World Scientific, New Jersey

    Book  Google Scholar 

  39. Feig DI, Reid TM, Loeb LA (1994) Reactive oxygen species in tumorigenesis. Cancer Res 54:1890s–1894s

    CAS  Google Scholar 

  40. Dizdaroglu M (2012) Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett 327:26–47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author thanks the Extreme Science and Engineering Discovery Environment (XSEDE) for the award allocation number TG-DMR110088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Nyporko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1012 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyporko, A.Y. The 8-oxo-dGTP interaction with human DNA polymerase β: two patterns of ligand behavior. Struct Chem 27, 175–183 (2016). https://doi.org/10.1007/s11224-015-0691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0691-8

Keywords

Navigation