Skip to main content
Log in

Transmission of electronic substituent effects along polyenic chains: a quantum chemical study based on structural variation and π-charge distribution

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The transmission of electronic substituent effects along chains of conjugated double bonds has been investigated by analyzing the small structural changes induced by a variable substituent X in the phenyl group of Ph–(CH=CH) n –X molecules (n = 2, 3, and 4). The structures of many such molecules with charged or dipolar substituents have been determined from quantum chemical calculations at the B3LYP/6-311++G** level of theory. The structural variation of the phenyl probe is best represented by a linear combination of the internal ring angles, termed S PEnF (n = 2, 3, and 4). Multiple regression analysis of the S PEnF parameters using appropriate explanatory variables reveals a composite electronic effect, the main component of which is the field effect of the variable substituent, enhanced by field-induced π-polarization of the polyenic chain. Also important is the role of resonance-induced field effects. An electronegativity term contributes significantly to the structural variation of the phenyl probe in (E)-β-substituted styrenes, Ph–CH=CH–X, but is marginally significant in Ph–(CH=CH)2–X molecules and not significant at all in Ph–(CH=CH)3–X and Ph–(CH=CH)4–X molecules. The structural substituent parameters S PE2F , S PE3F , S PE4F , as well as S STYF from (E)-β-substituted styrenes, are all correlated to each other. However, even though the correlation coefficients are high, it appears unequivocally that the data points corresponding to dipolar substituents and those corresponding to charged groups are aligned along slightly different straight lines. An analysis of π-charge distribution in Ph–(CH=CH) n –X molecules (n = 1–4) has also been carried out. It appears that as the number of double bonds increases, the π-charge transmitted from the variable substituent to the hydrocarbon frame becomes larger, while the π-charge transmitted to the phenyl probe becomes smaller. In each of the three series of Ph–(CH=CH) n –X molecules (n = 2, 3, and 4), the π-charge of the phenyl probe is linked by an excellent nonlinear relationship to the corresponding structural substituent parameter S PEnF (n = 2, 3, and 4). The effect of the variable substituent on the geometry of the polyenic chain has been studied by analyzing the alternation of C–C bond lengths along the chain in Ph–(CH=CH)4–X molecules. The alternation is most pronounced and regular when the variable substituent X is an uncharged group, irrespective of whether it is a π-acceptor or a π-donor. For the five strongest resonant substituents in our data set (namely, the charged groups CH2 +, CH2 (c), NH, O, and N2 +), there is a region in the chain where the alternation between adjacent C–C bonds decreases and inverts, a structural feature known as geometric soliton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Campanelli AR, Domenicano A, Ramondo F (2003) J Phys Chem A 107:6429–6440

    Article  CAS  Google Scholar 

  2. Campanelli AR, Domenicano A, Ramondo F, Hargittai I (2004) J Phys Chem A 108:4940–4948

    Article  CAS  Google Scholar 

  3. Campanelli AR, Domenicano A, Macchiagodena M, Ramondo F (2011) Struct Chem 22:1131–1141

    Article  CAS  Google Scholar 

  4. Campanelli AR, Domenicano A, Ramondo F (2006) J Phys Chem A 110:10122–10129

    Article  CAS  Google Scholar 

  5. Campanelli AR, Domenicano A, Piacente G, Ramondo F (2010) J Phys Chem A 114:5162–5170

    Article  CAS  Google Scholar 

  6. Campanelli AR, Domenicano A, Ramondo F (2011) Struct Chem 22:449–457

    Article  CAS  Google Scholar 

  7. Campanelli AR, Domenicano A, Ramondo F (2012) J Phys Chem A 116:8209–8217

    Article  CAS  Google Scholar 

  8. Campanelli AR, Domenicano A (2013) Struct Chem 24:867–876

    Article  CAS  Google Scholar 

  9. Campanelli AR (2013) Struct Chem 24:859–866

    Article  CAS  Google Scholar 

  10. Campanelli AR, Domenicano A (2014) Struct Chem 25:691–698

    Article  CAS  Google Scholar 

  11. Campanelli AR, Domenicano A, Hnyk D (2015) J Phys Chem A 119:205–214

    Article  CAS  Google Scholar 

  12. Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalito

    Google Scholar 

  13. Leatherman G, Durantini EN, Gust D, Moore TA, Moore AL, Stone S, Zhou Z, Rez P, Liu YZ, Lindsay SM (1999) J Phys Chem B 103:4006–4010

    Article  CAS  Google Scholar 

  14. Savedra RM, Pinto MF, Trsic M (2006) J Chem Phys 125:144901

    Article  Google Scholar 

  15. Blanchard-Desce M, Alain V, Bedworth PV, Marder SR, Fort A, Runser C, Barzoukas M, Lebus S, Wortmann R (1997) Chem Eur J 3:1091–1104

    Article  CAS  Google Scholar 

  16. An Z, Wong KY (2003) J Chem Phys 119:1204–1207

    Article  CAS  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashy R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford

  18. Reed AE, Weinhold F (1985) J Chem Phys 83:1736–1740

    Article  CAS  Google Scholar 

  19. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  20. Laidler KJ, Meiser JH, Sanctuary BC (2003) Physical chemistry, 4th edn. Houghton Mifflin Company, Boston, p 911

    Google Scholar 

  21. Gillespie RJ, Hargittai I (1991) The VSEPR model of molecular geometry. Allyn and Bacon, Boston (2012, Dover, Mineola)

  22. Taft RW, Topsom RD (1987) Prog Phys Org Chem 16:1–83

    Article  Google Scholar 

  23. Lide DR, Frederikse HPR (eds) (1997–1998) CRC handbook of chemistry and physics, 78th edn. CRC Press, Boca Raton, Sect 10, p 205

  24. Kushmerick JG, Holt DB, Pollack SK, Ratner MA, Yang JC, Schull TL, Naciri J, Moore MH, Shashidhar R (2002) J Am Chem Soc 124:10654–10655

    Article  CAS  Google Scholar 

  25. Choi CH, Kertesz M, Karpfen A (1997) J Chem Phys 107:6712–6721

    Article  Google Scholar 

  26. Jacquemin D, Femenias A, Chermette H, Ciofini I, Adamo C, André J-M, Perpète EA (2006) J Phys Chem A 110:5952–5959

    Article  CAS  Google Scholar 

  27. Jacquemin D, Adamo C (2011) J Chem Theory Comput 7:369–376

    Article  CAS  Google Scholar 

  28. Körzdörfer T, Brédas J-L (2014) Acc Chem Res 47:3284–3291

    Article  Google Scholar 

  29. Olthof R, Vos A, Kracht D (1967) Rec Trav Chim Pays Bas 86:1295–1300. doi:10.1002/recl.19670861204

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the CINECA Supercomputing Center, Bologna, with projects IsC10_DYNGEO_E and MOLVIB, and by the Department of Chemistry, Sapienza-University of Rome, through the Supporting Research Initiative 2013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Rita Campanelli or Aldo Domenicano.

Additional information

This paper is dedicated to Professor Magdolna Hargittai—good friend, distinguished scientist, and champion at unraveling the structures of small, elusive molecules—on the occasion of her 70th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 692 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campanelli, A.R., Domenicano, A. Transmission of electronic substituent effects along polyenic chains: a quantum chemical study based on structural variation and π-charge distribution. Struct Chem 26, 1259–1271 (2015). https://doi.org/10.1007/s11224-015-0628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0628-2

Keywords

Navigation