Skip to main content
Log in

IR spectra of nitrobenzene and nitrobenzene-15N in the gas phase, ab initio analysis of vibrational spectra and reliable force fields of nitrobenzene and 1,3,5-trinitrobenzene. Investigation of equilibrium geometry and internal rotation in these simplest aromatic nitro compounds with one and three rotors by means of electron diffraction, spectroscopic, and quantum chemistry data

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The IR spectra of gaseous nitrobenzene (NB) and its 15N isotopomer have been obtained in the frequency range of 3500–250 cm−1, and the far-IR spectra of their solutions and the NB neat liquid sample have been recorded in the range of 600–30 cm−1. A detailed description of the spectra of NB and 1,3,5-trinitrobenzene (sym-TNB) and their isotopomers has been accomplished using the force fields calculated at the MP2(full)/aug-cc-pVTZ and MP2(full)/cc-pVTZ levels. Transferability of the refined scale factors for the calculated force constants obtained by the Pulay technique has been used to provide evidence for validity of both interpreting the NB and sym-TNB spectra and refining the calculated force fields. The direct and inverse spectral problems have been solved by variational technique to determine torsional energy levels and refine the potential function by optimizing the V k coefficients in its Fourier series expansion. The height of the MP2(full) barrier to internal rotation has been reduced from 5.5 to 4.5 kcal/mol due to extension of the used basis set from 6-31(d,p) to aug-cc-pVTZ. The method of joint dynamic structural analysis of the GED, MW, and vibrational spectroscopy, and ab initio data in terms of the PES parameters have been applied to investigation of equilibrium geometry and internal rotation in the nonrigid NB and sym-TNB molecules having one and three coupled internal rotors, respectively. The experimental r e-parameter values of both molecules (C 2v and D 3h point group symmetries) are in agreement with those obtained by ab initio calculations. This paper is dedicated to Professor Magdolna Hargittai on the occasion of her 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Up to a mirror reflection, which is unimportant for us because it does not change the results of the spectroscopic and GED experiments.

References

  1. Osipov VG, Shlyapochnikov VA, Ponizovtsev EF (1968) J Appl Spectrosc 8:598–599

    Article  Google Scholar 

  2. Osipov VG (1969) Vibrational spectra of unsaturated and aromatic nitroderivatives. Ph. D. Thesis, M.V. Lomonosov Moscow State University

  3. Hog JH, Nygaard L, Sorensen GO (1970) J Mol Struct 7:111–121

    Article  Google Scholar 

  4. Hog JH (1971) A study of nitrobenzene. Ph. D. Thesis, University of Copenhagen

  5. Takezaki M, Hirota N, Terazima M, Sato H, Nakajima T, Kato S (1997) J Phys Chem 101:5190–5195

    Article  CAS  Google Scholar 

  6. Yip RW, Sharma DK, Giasson R, Gravel D (1984) J Phys Chem 88:5770–5772

    Article  CAS  Google Scholar 

  7. Green JHS, Kynaston W, Lindsey AS (1961) Spectrochim Acta 17:486–502

    Article  CAS  Google Scholar 

  8. Stephenson CW, Coburn WC, Wilcox WS (1961) Spectrochim Acta 17:933–946

    Article  CAS  Google Scholar 

  9. Daehne S, Stanko H (1962) Spectrochim Acta 18:561–567

    Article  CAS  Google Scholar 

  10. Pinchas S, Samuel D, Silver BL (1964) Spectrochim Acta 20:179–185

    Article  CAS  Google Scholar 

  11. McWhinnie WR, Poller RC (1966) Spectrochim Acta 22:501–507

    Article  CAS  Google Scholar 

  12. Farmer VC (1967) Spectrochim Acta 23A:728–730

    Article  Google Scholar 

  13. Green JHS, Harrison DJ (1970) Spectrochim Acta 26A:1925–1937

    Article  Google Scholar 

  14. Kuwae A, Machida K (1979) Spectrochim Acta 35A:27–33

    Article  CAS  Google Scholar 

  15. Laposa JD (1979) Spectrochim Acta 35A:65–71

    Article  CAS  Google Scholar 

  16. Clarkson J, Smith WE (2003) J Mol Struct 655:413–422

    Article  CAS  Google Scholar 

  17. Shurvell HF, Faniran JA, Symons EA, Buncel E (1967) Can J Chem 45:117–121

    Article  CAS  Google Scholar 

  18. Shurvell HF, Norris AR, Irish DE (1969) Can J Chem 47:2515–2519

    Article  CAS  Google Scholar 

  19. Huvenne JP, Vergoten G, Fleury G, Blain M, Odiot S (1984) J Mol Struct 118:177–188

    Article  CAS  Google Scholar 

  20. Varsanyi G, Holly S, Imre L (1967) Spectrochim Acta 23A:1205–1210

    Article  Google Scholar 

  21. Urbanowicz P, Kupka T, Wrzalik R, Pasterny K (1999) J Mol Struct 482–483:409–414

    Article  Google Scholar 

  22. Fogarasi G, Pulay P (1985) In: Durig JR (ed) Vibrational spectra and structure, Vol. 14, Chap. 3. Elesevier, Amsterdam, pp 125–219

    Google Scholar 

  23. Pulay P, Fogarasi G, Pang F, Boggs JE (1979) J Am Chem Soc 101:2550–2560

    Article  CAS  Google Scholar 

  24. Pulay P, Fogarasi G, Pongor G, Boggs JE (1983) J Am Chem Soc 105:7037–7047

    Article  CAS  Google Scholar 

  25. Shlyapochnikov VA, Khaikin LS, Grikina OE, Bock CW, Vilkov LV (1994) J Mol Struct 326:1–16

    Article  CAS  Google Scholar 

  26. Khaikin LS, Grikina OE, Shlyapochnikov VA, Boggs JE (1994) Russ Chem Bull 43:1987–1998

    Article  Google Scholar 

  27. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  28. Head-Gordon M, Pople JA (1990) Chem Phys Lett 173:585–589

    Article  CAS  Google Scholar 

  29. Head-Gordon M, Pople JA (1993) J Phys Chem 97:1147–1151

    Article  CAS  Google Scholar 

  30. Staikova M, Csizmadia IG (1999) J Mol Struct (Theochem) 467:181–186

    Article  CAS  Google Scholar 

  31. Sancho-Garsia JC, Perez-Jimenez AJ (2003) J Chem Phys 119:5121–5127

    Article  Google Scholar 

  32. Carriera LA, Towns TG (1977) J Mol Struct 41:1–9

    Article  Google Scholar 

  33. Shishkov IF, Sadova NI, Novikov VP, Vilkov LV (1984) J Struct Chem 25:260–263

    Article  Google Scholar 

  34. Domenicano A, Schultz G, Hargittai I, Colapietro M, Portalone G, George P, Bock CW (1990) Struct Chem 1:107–122

    Article  CAS  Google Scholar 

  35. Borisenko KB, Hargittai I (1996) J Mol Struct 382:171–176

    Article  CAS  Google Scholar 

  36. He Y, Gahlmann A, Feenstra JS, Park ST, Zewail AH (2006) Chem Asian J 1–2:56–63

    Article  Google Scholar 

  37. Dorofeeva OV, Vishnevskiy YV, Vogt N, Vogt J, Khristenko LV, Krasnoshchekov SV, Shishkov IF, Hargittai I, Vilkov LV (2007) Struct Chem 18:739–753

    Article  CAS  Google Scholar 

  38. Dunning TH (1989) J Chem Phys 90:1007–1024

    Article  CAS  Google Scholar 

  39. Moran D, Simonett AC, Leach FE, Allen WD, Schleyer PR, Schaefer HF (2006) J Am Chem Soc 128:9342–9343

    Article  CAS  Google Scholar 

  40. Sancho-Garcia JC, Perez-Jimenez AJ, Perez-Jorda JM, Moscardo F (2001) J Chem Phys 115:3698–3705

    Article  CAS  Google Scholar 

  41. Varandas AJC (2000) J Chem Phys 113:8880–8887

    Article  CAS  Google Scholar 

  42. Sadova NI, Penionzhkevich NP, Golubinskii AA, Vilkov LV (1976) J Struct Chem 17:654–655

    Article  Google Scholar 

  43. Penionzhkevich NP, Sadova NI, Popik NI, Vilkov LV, Pankrushev YA (1979) J Struct Chem 20:512–520

    Article  Google Scholar 

  44. Sipachev VA (1985) J Mol Struct (Theochem) 121:143–151

    Article  Google Scholar 

  45. Sipachev VA (1999) In: Hargittai I, Hargittai M (eds) Advances in molecular structure research. JAI, Greenwich, pp 263–311

    Google Scholar 

  46. Sipachev VA (2011) Advances in physical chemistry, vol 2011, Article ID 864714. doi:10.1155/2011/864714

  47. Khaikin LS, Grikina OE, Sipachev VA, Belyakov AV, Bogoradovskii ET, Kolonits M (2000) J Mol Struct 523:23–37

    Article  CAS  Google Scholar 

  48. Larsen NW (2010) J Mol Struct 963:100–105

    Article  CAS  Google Scholar 

  49. Spiridonov VP (1997) In: Hargittai I, Hargittai M (eds) Advances in molecular structure research, vol 3. JAI, Greenwich, pp 53–81

    Chapter  Google Scholar 

  50. Ischenko AA, Girichev GV, Tarasov YI (2013) Electron diffraction: structure and dynamics of free molecules and condensed state of substance. Fizmatlit, Moscow (in Russian)

    Google Scholar 

  51. Kochikov IV, Tarasov YI, Kuramshina GM, Spiridonov VP, Yagola AG, Strand TG (1998) J Mol Struct 445:243–258

    Article  CAS  Google Scholar 

  52. Kochikov IV, Tarasov YI, Spiridonov VP, Kuramshina GM, Yagola AG, Saakjan AS, Popik MV, Samdal S (1999) J Mol Struct 485–486:421–443

    Article  Google Scholar 

  53. Kochikov IV, Tarasov YI, Vogt N, Spiridonov VP (2002) J Mol Struct 607:163–174

    Article  CAS  Google Scholar 

  54. Dakkouri M, Kochikov IV, Tarasov YI, Vogt N, Vogt J, Bitschenauer R (2002) J Mol Struct 607:195–206

    Article  CAS  Google Scholar 

  55. Kochikov IV, Tarasov YI (2003) Struct Chem 14:227–238

    Article  CAS  Google Scholar 

  56. Kovtun DM, Kochikov IV, Tarasov YI (2015) J Chem Phys A 119(9):1657–1665

    Article  CAS  Google Scholar 

  57. Choi CS, Abel JE (1972) Acta crystallogr B28:193–201

    Article  Google Scholar 

  58. Krasnoshchekov SV, Abramenkov AV, Panchenko YN (1997) Zh Fiz Khim 71:497–501

    CAS  Google Scholar 

  59. Yagola AG, Kochikov IV, Kuramshina GM, Pentin YA (1999) Inverse problems of vibrational spectroscopy. VSP, Utrecht

    Book  Google Scholar 

  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian Inc., Pittsburgh

  61. Fogarasi G, Szalay PG (1997) J Phys Chem A 101:1400–1408

    Article  CAS  Google Scholar 

  62. Khaikin LS, Grikina OE, Abramenkov AV, Stepanov NF (2005) Russ J Phys Chem 79:591–598

    CAS  Google Scholar 

  63. Khaikin LS, Grikina OE, Stepanov NF (2005) Russ J Phys Chem 79:741–746

    CAS  Google Scholar 

  64. Burton NA, Chiu SS, Davidson MM, Green DVS, Hillier IH, McDouall JJW, Vincent MA (1993) J Chem Soc Faraday Trans 89:2631–2635

    Article  CAS  Google Scholar 

  65. Kwiatkowski JS, Leszczynski J (1993) J Mol Struct 297:277–284

    Article  CAS  Google Scholar 

  66. Perova TS (1994) In: Coffey W (ed) Advances in chemical physics. Wiley, New York, p 427

    Chapter  Google Scholar 

  67. Abramenkov AV (1995) Russ J Phys Chem 69:948–952

    Google Scholar 

  68. Meyer R, Gunthard HH (1968) J Chem Phys 49:1510–1520

    Article  CAS  Google Scholar 

  69. Meyer R (1979) J Mol Spectrosc 76:266–300

    Article  CAS  Google Scholar 

  70. Abramenkov AV, Bock CW, De Mare GR, Panchenko YN (1996) J Mol Struct 176:183–194

    Article  Google Scholar 

  71. Ribeaud M, Bauder A, Gunthard HH (1972) Mol Phys 23:235–248

    Article  CAS  Google Scholar 

  72. Wilkinson JH, Reinsh C (1971) Linear algebra: hand-book for automatic computation, vol 2. Springer, Berlin

    Book  Google Scholar 

  73. Ross AW, Fink M, Hilderbrandt RL (1992) Complex scattering factors for the diffraction of electrons by gases. In: Wilson AJC (ed) International tables for X-ray crystallography, vol 4. Kluwer, Dordrecht

  74. Tavard C, Nicolas D, Rouault M (1967) J Chim Phys 64:540–554

    CAS  Google Scholar 

  75. Bunker PR, Jensen P (1998) Molecular symmetry and spectroscopy, 2nd edn. NRC Research Press, Ottawa

    Google Scholar 

  76. Kudich AV, Bataev VA, Abramenkov AV, Pupyshev VI, Godunov IA (2003) J Mol Struct Theochem 631:39–51

    Article  CAS  Google Scholar 

  77. Landau LD, Lifshits EM (1981) Course of theoretical physics, vol 3: quantum mechanics, nonrelativistic theory. Pergamon, Oxford

    Google Scholar 

  78. Kuchitsu K, Nakata M, Yamamoto S (1988) In: Hargittai I, Hargittai M (eds) Stereochemical application of gas phase electron diffraction, part A. VCH, Vew York, pp 227–264

    Google Scholar 

  79. Kuchitsu K, Fukuyama T, Morino Y (1967–1968) J Mol Struct 1:463–479

  80. Khaikin LS, Grikina OE, Abramenkov AV, Vilkov LV (2005) Russ J Phys Chem 79:229–234

    CAS  Google Scholar 

  81. Vogt N, Khaikin LS, Grikina OE, Rykov AN, Vogt J (2008) J Phys Chem A 112:7662–7670

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Professor Istvan Hargittai, member of Academia Europaea and the Hungarian Academy of Sciences, for providing an opportunity to use high-quality electron scattering intensities for the NB and sym-TNB molecules which were recorded at the Budapest University of Technology and Economics. We thank Mrs. Elizaveta Ogorodnikova for her assistance in preparing this article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis S. Tikhonov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaikin, L.S., Kochikov, I.V., Grikina, O.E. et al. IR spectra of nitrobenzene and nitrobenzene-15N in the gas phase, ab initio analysis of vibrational spectra and reliable force fields of nitrobenzene and 1,3,5-trinitrobenzene. Investigation of equilibrium geometry and internal rotation in these simplest aromatic nitro compounds with one and three rotors by means of electron diffraction, spectroscopic, and quantum chemistry data. Struct Chem 26, 1651–1687 (2015). https://doi.org/10.1007/s11224-015-0613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0613-9

Keywords

Navigation