Skip to main content
Log in

Understanding the structure of salicyl hydrazone metallocomplexes: crystal structure, AIM and Hirshfeld surface analysis of trichloro-(N-salicylidenebenzoylhydrazinato-N,O,O′)-tin(IV)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The results of detailed experimental and theoretical study of chemical intra- and intermolecular bonding of salicyl hydrazone complex with SnCl3 are described. The chemical bonding pattern in the crystal and isolated molecule is described in terms of Bader’s “Atoms in Molecules” (AIM) theory. Analysis of AIM charges has revealed that amount of charge transferred from ligand to SnCl3 moiety is equal to ≈ 0.3 e that leads to significant redistribution of bond lengths as compared to other tin(IV) salicyl hydrazonates. Comparison of geometry and characteristics of electron density distribution indicates the weakening of coordination Sn–O and Sn–N bonds in isolated molecule in comparison with crystal up to 10 kcal/mol. This effect was explained by the intermolecular H···Cl bonding. According to the Hirshfeld surface analysis, these interactions have the most pronounced contribution to the crystal packing energy. The significance of the present article lies in both the detailed inspection of the crystal packing effect on the coordination bonds of the tin(IV) atom and intermolecular interactions governing the supramolecular self-assembly of hydrogen-bonded chains by means of specific interactions and π···π stacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tiekink ERT (1991) Structural chemistry of organotin carboxylates. J Organomet Chem 408:323–327. doi:10.1016/0022-328X(91)83203-G

    Article  CAS  Google Scholar 

  2. Chandrasekhar V, Nagendran S, Baskar V (2002) Organotin assemblies containing Sn–O bonds. Coord Chem Rev 235:1–52. doi:10.1016/S0010-8545(02)00178-9

    Article  CAS  Google Scholar 

  3. Davies AG (2004) Organotin chemistry, 2nd, completely rev. and updated ed. Wiley-VCH, Weinheim

    Google Scholar 

  4. Chandrasekhar V, Gopal K, Thilagar P (2007) Nanodimensional organostannoxane molecular assemblies. Acc Chem Res 40:420–434. doi:10.1021/ar600061f

    Article  CAS  Google Scholar 

  5. Chandrasekhar V, Singh P, Gopal K (2007) Organotin compounds containing four-membered distannoxane [Sn(µ-OH)]2 units. Appl Organomet Chem 21:483–503. doi:10.1002/aoc.1260

    Article  CAS  Google Scholar 

  6. Bacchi A, Bonardi A, Carcelli M, Mazza P, Pelagatti P, Pelizzi C, Pelizzi G, Solinas C, Zani F (1998) Organotin complexes with pyrrole-2,5-dicarboxaldehyde bis(acylhydrazones). Synthesis, structure, antimicrobial activity and genotoxicity. J Inorg Biochem 69:101–112. doi:10.1016/S0162-0134(97)10027-7

    Article  CAS  Google Scholar 

  7. Rashan LJ, Aziz AA, Sulayman KD, Al-Allaf TAK, Al-Shama’a MA (1998) Antibacterial activity of diorganotin(IV) complexes of some Schiff-base derivatives. Asian J Chem 10:338–341

    CAS  Google Scholar 

  8. Rocamora-Reverte L, Carrasco-García E, Ceballos-Torres J, Prashar S, Kaluđerović GN, Ferragut JA, Gómez-Ruiz S (2012) Study of the anticancer properties of tin(IV) carboxylate complexes on a panel of human tumor cell lines. ChemMedChem 7:301–310. doi:10.1002/cmdc.201100432

    Article  CAS  Google Scholar 

  9. Tabassum S, Pettinari C (2006) Chemical and biotechnological developments in organotin cancer chemotherapy. J Organomet Chem 691:1761–1766. doi:10.1016/j.jorganchem.2005.12.033

    Article  CAS  Google Scholar 

  10. Dokorou V, Primikiri A, Kovala-Demertzi D (2011) The triphenyltin(VI) complexes of NSAIDs and derivatives. Synthesis, crystal structure and antiproliferative activity. Potent anticancer agents. J Inorg Biochem 105:195–201. doi:10.1016/j.jinorgbio.2010.10.008

    Article  CAS  Google Scholar 

  11. Jain VK (1994) The chemistry and applications of organotin(IV) complexes of phosphorus-based acids. Coord Chem Rev 135–136:809–843. doi:10.1016/0010-8545(94)80083-9

    Article  Google Scholar 

  12. Orita A, Mitsutome A, Otera J (1998) Distannoxane-catalyzed highly selective acylation of alcohols. J Org Chem 63:2420–2421. doi:10.1021/jo9800412

    Article  CAS  Google Scholar 

  13. Orita A, Watanabe A, Tsuchiya H, Otera J (1999) Integrated chemical process. Construction of highly substituted allylic moieties from allylic sulfones in one-pot. Tetrahedron 55:2889–2898. doi:10.1016/S0040-4020(99)00053-8

    Article  CAS  Google Scholar 

  14. Hori Y, Hagiwara T (1999) Ring-opening polymerisation of β-butyrolactone catalysed by distannoxane complexes: study of the mechanism. Int J Biol Macromol 25:237–245. doi:10.1016/S0141-8130(99)00038-0

    Article  CAS  Google Scholar 

  15. Chernov OV, Smirnov AY, Portnyagin IA, Khrustalev VN, Nechaev MS (2009) Heteroleptic tin (II) dialkoxides stabilized by intramolecular coordination Sn(OCH2CH2NMe2)(OR) (R = Me, Et, iPr, tBu, Ph). Synthesis, structure and catalytic activity in polyurethane synthesis. J Organomet Chem 694:3184–3189. doi:10.1016/j.jorganchem.2009.05.014

    Article  CAS  Google Scholar 

  16. Takagi N, Shimizu T, Frenking G (2009) Divalent E(0) Compounds (E = Si-Sn). Chem Eur J 15:8593–8604. doi:10.1002/chem.200901401

    Article  CAS  Google Scholar 

  17. Power PP (2007) Bonding and reactivity of heavier group 14 element alkyne analogues. Organometallics 26:4362–4372. doi:10.1021/om700365p

    Article  CAS  Google Scholar 

  18. Singh N, Prasad R, Bhattacharya S (2009) Structural studies on Ph3MSMPh3 (M = Sn, Pb): quest for a metal–metal bond. Polyhedron 28:548–552. doi:10.1016/j.poly.2008.11.033

    Article  CAS  Google Scholar 

  19. Poleshchuk OK, Shevchenko EL, Branchadell V, Lein M, Frenking G (2005) Energy analysis of the chemical bond in group IV and V complexes: a density functional theory study. Int J Quantum Chem 101:869–877. doi:10.1002/qua.20348

    Article  CAS  Google Scholar 

  20. Korlyukov AA, Khrustalev VN, Vologzhanina AV, Lyssenko KA, Nechaev MS, Antipin MYu (2011) Bis (2-2-(dimethylamino) ethoxo-N, O, O)-di(phenolato-O) ditin (II): a high-resolution single-crystal X-ray diffraction and quantum chemical study. Acta Crystallogr B B67:315–323. doi:10.1107/S0108768111022695

    Article  Google Scholar 

  21. Bader RWF (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, New York

    Google Scholar 

  22. Karlov SS, Tyurin DA, Zabalov MV, Churakov AV, Zaitseva GS (2005) Quantum chemical study of group 14 elements pentacoordinated derivatives—metallatranes. J Mol Struct THEOCHEM 724:31–37. doi:10.1016/j.theochem.2005.01.036

    Article  CAS  Google Scholar 

  23. Schäfer A, Winter F, Saak W, Haase D, Pöttgen R, Müller T (2011) Stannylium ions, a tin(II) arene complex, and a tin dication stabilized by weakly coordinating anions. Chem Eur J 17:10979–10984. doi:10.1002/chem.201101938

    Article  Google Scholar 

  24. Gruener SV, Airapetyan DV, Korlyukov AA, Shipov AG, Baukov YuI, Petrosyan VS (2010) Interaction of ethyltrichlorostannane with N,N-dimethylamides of O-trimethylsilyl-α-hydroxyacids. Appl Organomet Chem 24:888–896. doi:10.1002/aoc.1732

    Article  CAS  Google Scholar 

  25. Beckmann J, Heinrich D, Mebs S (2013) Molecular structure and real-space bonding descriptors (AIM, ELI-D) of phenyl(triphenylstannyl)telluride: phenyl(triphenylstannyl)telluride. Z Für Anorg Allg Chem 639:2129–2133. doi:10.1002/zaac.201300271

    Article  CAS  Google Scholar 

  26. Hupf E, Lork E, Mebs S, Chęcińska L, Beckmann J (2014) Probing donor–acceptor interactions in peri-substituted diphenylphosphinoacenaphthyl-element dichlorides of group 13 and 15 elements. Organometallics 33:7247–7259. doi:10.1021/om501036c

    Article  CAS  Google Scholar 

  27. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173. doi:10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  28. Abramov YuA (1997) On the possibility of kinetic energy density evaluation from the experimental electron-density distribution. Acta Crystallogr A A53:264–272. doi:10.1107/S010876739601495X

    Article  CAS  Google Scholar 

  29. Kirzhnits DA (1957) Quantum corrections to the Thomas-Fermi equation. Sov Phys JETP 64–72

  30. Korlyukov AA, Lysenko KA, Antipin MYu, Shipov AG, Kramarova EP, Murasheva TA, Negrebetskii VV, Ovchinnikov YuE, Pogozhikh SS, Yakovlev IP, Baukov YuI (2006) Synthesis, molecular and crystal structure, and features of the electronic structure of bis(O’i)-chelated bis(2,2-dimethylbenzo-[2H]-4-oxo-1,3-oxazino-3-methyl)difluorosilane. Chem Heterocycl Compd 42:1592–1602. doi:10.1007/s10593-006-0283-z

    Article  CAS  Google Scholar 

  31. Korlyukov AA, Komissarov EA, Antipin MYu, Alekseev NV, Pavlov KV, Krivolapova OV, Lahtin VG, Chernyshev EA (2008) The structural peculiarities and chemical bonding in three organogermanes Cl3GeCH2OC(O)R with rigid coordination centre. J Mol Struct 875:135–142. doi:10.1016/j.molstruc.2007.04.019

    Article  CAS  Google Scholar 

  32. Korlyukov AA, Lyssenko KA, Antipin MYu, Grebneva EA, Albanov AI, Trofimova OM, Zel’bst EA, Voronkov MG (2009) Si-Fluoro substituted quasisilatranes (N → Si) FYSi(OCH2CH2)2NR. J Organomet Chem 694:607–615. doi:10.1016/j.jorganchem.2008.09.010

    Article  CAS  Google Scholar 

  33. Tikhonova IA, Tugashov KI, Dolgushin FM, Korlyukov AA, Petrovskii PV, Klemenkova ZS, Shur VB (2009) Coordination chemistry of mercury-containing anticrowns. Synthesis and structures of the complexes of cyclic trimeric perfluoro-o-phenylenemercury with ethanol, THF and bis-2,2′-tetrahydrofuryl peroxide. J Organomet Chem 694:2604–2610. doi:10.1016/j.jorganchem.2009.03.046

    Article  CAS  Google Scholar 

  34. Puntus LN, Lyssenko KA, Antipin MY, Bünzli J-CG (2008) Role of inner- and outer-sphere bonding in the sensitization of Eu(III)-luminescence deciphered by combined analysis of experimental electron density distribution function and photophysical data. Inorg Chem 47:11095–11107. doi:10.1021/ic801402u

    Article  CAS  Google Scholar 

  35. Borissova AO, Korlyukov AA, Antipin MY, Lyssenko KA (2008) Estimation of dissociation energy in donor–acceptor complex AuCl·PPh3 via topological analysis of the experimental electron density distribution function. J Phys Chem A 112:11519–11522. doi:10.1021/jp807258d

    Article  CAS  Google Scholar 

  36. Ainscough EW, Brodie AM, Ranford JD, Waters JM (1995) Hexafluorosilicate coordination to the antitumour copper(II) salicylaldehyde benzoylhydrazone (H2L) system: single-crystal X-ray structure of [{Cu(HL)H2O}2SiF6]·2H2O. Inorg Chim Acta 236:83–88. doi:10.1016/0020-1693(95)04604-8

    Article  CAS  Google Scholar 

  37. Das S, Pal S (2005) Copper(II) complexes with tridentate N-(benzoyl)-N′-(salicylidine)-hydrazine and monodentate N-heterocycles: investigations of intermolecular interactions in the solid state. J Mol Struct 753:68–79. doi:10.1016/j.molstruc.2005.05.037

    Article  CAS  Google Scholar 

  38. Platts JA, Thomsen MK, Overgaard J (2013) Electron localisation in Ga-heterocyclic compounds. Z Für Anorg Allg Chem 639:1979–1984. doi:10.1002/zaac.201200498

    Article  CAS  Google Scholar 

  39. Blessing RH (1995) An empirical correction for absorption anisotropy. Acta Crystallogr A A51:33–38. doi:10.1107/S0108767394005726

    Article  CAS  Google Scholar 

  40. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A A64:112–122. doi:10.1107/S0108767307043930

    Article  Google Scholar 

  41. Hansen NK, Coppens P (1978) Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr A A34:909–921. doi:10.1107/S0567739478001886

    Article  CAS  Google Scholar 

  42. Koritsansky TS, Howard ST, Richter T, Macchi P, Volkov A, Gatti C, Mallinson PR, Su S, Hansen NK (2003) XD—a computer program package for multipole refinement and topological analysis of charge densities from diffraction data

  43. Su Z, Coppens P (1998) Relativistic X-ray elastic scattering factors for neutral atoms Z = 1–54 from multiconfiguration Dirac–Fock wavefunctions in the 0–12Å−1 sinθ/λ range, and six-Gaussian analytical expressions in the 0–6Å−1 range. Erratum. Acta Crystallogr A 54:357. doi:10.1107/S010876739800124X

    Article  Google Scholar 

  44. Overgaard J, Jones C, Dange D, Platts JA (2011) Experimental charge density analysis of a gallium(I) N-heterocyclic carbene analogue. Inorg Chem 50:8418–8426. doi:10.1021/ic2009946

    Article  CAS  Google Scholar 

  45. Zhurov VV, Zhurova EA, Stash AI, Pinkerton AA (2011) Characterization of bonding in cesium uranyl chloride: topological analysis of the experimental charge density. J Phys Chem A 115:13016–13023. doi:10.1021/jp204965b

    Article  CAS  Google Scholar 

  46. Schmøkel MS, Bjerg L, Cenedese S, Jørgensen MRV, Chen Y-S, Overgaard J, Iversen BB (2014) Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: a combined experimental and theoretical electron density study. Chem Sci 5:1408. doi:10.1039/c3sc52977k

    Article  Google Scholar 

  47. Meindl K, Herbst-Irmer R, Henn J (2010) On the effect of neglecting anharmonic nuclear motion in charge density studies. Acta Crystallogr A 66:362–371. doi:10.1107/S0108767310006343

    Article  CAS  Google Scholar 

  48. Zhurov VV, Zhurova EA, Pinkerton AA (2008) Optimization and evaluation of data quality for charge density studies. J Appl Crystallogr 41:340–349. doi:10.1107/S0021889808004482

    Article  CAS  Google Scholar 

  49. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45:849–854. doi:10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  50. Stash A, Tsirelson V (2002) WinXPRO: a program for calculating crystal and molecular properties using multipole parameters of the electron density. J Appl Crystallogr 35:371–373. doi:10.1107/S0021889802003230

    Article  CAS  Google Scholar 

  51. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558. doi:10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  52. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169. doi:10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  53. Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. doi:10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  54. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  55. Gonze X, Beuken J-M, Caracas R, Detraux F, Fuchs M, Rignanese G-M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J-Y, Allan DC (2002) First-principles computation of material properties: the ABINIT software project. Comput Mater Sci 25:478–492. doi:10.1016/S0927-0256(02)00325-7

    Article  Google Scholar 

  56. Frisch MJ et al. Gaussian 03, C.01

  57. Keith TA. AIMALL, version 09.04.23. http://aim.tkgristmill.com/

  58. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. doi:10.1039/B818330A

    Article  CAS  Google Scholar 

  59. Wolff SK, Grimwood DG, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) CrystalExplorer (Version 3.0). University of Western Australia, Perth

    Google Scholar 

  60. Dey DK, Samanta B, Lycka A, Dahlenburg L (2003) Simple synthesis, characterization and structure of diorganotin(IV) complexes containing the N-(2-salicylidene)-N’-benzoylhydrazone ligand. Z Naturforschung Sect B J Chem Sci 58:336–344

    CAS  Google Scholar 

  61. Lyubchova A, Cossé-Barbi A, Doucet JP, Robert F, Souron JP, Quarton M (1995) Salicylaldehyde benzoyl hydrazone. Acta Crystallogr C 51:1893–1895. doi:10.1107/S0108270195003076

    Article  Google Scholar 

  62. Luo R (2007) Comprehensive handbook of chemical bond energies. CRC Press, Taylor and Francis Group LLC, Boca Raton

    Book  Google Scholar 

  63. Wakamatsu K, Orita A, Otera J (2008) Evaluation of tin–oxygen bond association by means of ab initio molecular orbital calculations. Organometallics 27:1092–1097. doi:10.1021/om701179j

    Article  CAS  Google Scholar 

  64. Nechaev MS, Ustynyuk YuA (2005) Molecular geometry and electronic structures of stable organic derivatives of divalent germanium and tin (M = Ge, n = 1; M = Sn, n = 2): a theoretical study. Russ Chem Bull 54:108–116. doi:10.1007/s11172-005-0225-4

    Article  CAS  Google Scholar 

  65. Strenalyuk T, Samdal S, Volden HV (2008) Molecular structure of phthalocyaninatotin(II) studied by gas-phase electron diffraction and high-level quantum chemical calculations. J Phys Chem A 112:10046–10052. doi:10.1021/jp804809e

    Article  CAS  Google Scholar 

  66. Kocher N, Henn J, Gostevskii B, Kost D, Kalikhman I, Engels B, Stalke D (2004) Si–E (E = N, O, F) bonding in a hexacoordinated silicon complex: new facts from experimental and theoretical charge density studies. J Am Chem Soc 126:5563–5568. doi:10.1021/ja038459r

    Article  CAS  Google Scholar 

  67. Voronkov MG, Dyakov VM, Kirpichenko SV (1982) Silatranes. J Organomet Chem 233:1–147. doi:10.1016/S0022-328X(00)86939-9

    Article  CAS  Google Scholar 

  68. Zubatyuk RI, Shishkina SV, Kucherenko LI, Mazur IA, Shishkin OV (2012) Environment-induced stabilization of hydrogen-bonded dimers in crystal of lysine (5-methyl-1H-[1,2,4]triazol-3ylsulfanyl)-acetate. Struct Chem 23:581–586. doi:10.1007/s11224-011-9893-x

    Article  CAS  Google Scholar 

  69. Shishkin OV, Zubatyuk RI, Shishkina SV, Dyakonenko VV, Medviediev VV (2014) Role of supramolecular synthons in the formation of the supramolecular architecture of molecular crystals revisited from an energetic viewpoint. Phys Chem Chem Phys 16:6773–6786. doi:10.1039/C3CP55390F

    Article  CAS  Google Scholar 

  70. Shishkin OV, Zubatyuk RI, Maleev AV, Boese R (2014) Investigation of topology of intermolecular interactions in the benzene–acetylene co-crystal by different theoretical methods. Struct Chem 25:1547–1552. doi:10.1007/s11224-014-0413-7

    Article  CAS  Google Scholar 

  71. Turner MJ, Thomas SP, Shi MW, Jayatilaka D, Spackman MA (2015) Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem Commun 51:3735–3738. doi:10.1039/C4CC09074H

    Article  CAS  Google Scholar 

  72. Dean PM, Pringle JM, Forsyth CM, Scott JL, MacFarlane DR (2008) Interactions in bisamide ionic liquids—insights from a Hirshfeld surface analysis of their crystalline states. New J Chem 32:2121–2126. doi:10.1039/B809606F

    Article  CAS  Google Scholar 

  73. Salvo FD, Camargo B, García Y, Teixidor F, Viñas C, Planas JG, Light ME, Hursthouse MB (2011) Supramolecular architectures in o-carboranyl alcohols bearing N-aromatic rings: syntheses, crystal structures and melting points correlation. CrystEngComm 13:5788–5806. doi:10.1039/C1CE05449J

    Article  Google Scholar 

  74. Grabowsky S, Dean PM, Skelton BW, Sobolev AN, Spackman MA, White AH (2012) Crystal packing in the 2-R,4-oxo-[1,3-a/b]-naphthodioxanes—Hirshfeld surface analysis and melting point correlation. CrystEngComm 14:1083–1093. doi:10.1039/C2CE06393J

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The reported study was supported by the Russian Science Foundation (Project 14-13-00884).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Korlyukov.

Additional information

In memoriam: Prof. Oleg V. Shishkin, STC “Institute for Single Crystals”, National Academy of Sciences of Ukraine, member of the Editorial Board of “Structural Chemistry”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11224_2015_612_MOESM1_ESM.doc

Supporting Information Available: CIF files, atomic charges and atomic coordinates of optimized structures are available. CCDC 744537 and 1062172 contain crystallographic data for IAM and multipole refinement (DOC 5367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korlyukov, A.A., Shmatkova, N.V., Seifullina, I.I. et al. Understanding the structure of salicyl hydrazone metallocomplexes: crystal structure, AIM and Hirshfeld surface analysis of trichloro-(N-salicylidenebenzoylhydrazinato-N,O,O′)-tin(IV). Struct Chem 27, 25–36 (2016). https://doi.org/10.1007/s11224-015-0612-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0612-x

Keywords

Navigation