Skip to main content
Log in

Theoretical study of binding affinity for diamidine with DNA

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Diamidine molecules, which have been recognized as the powerful gene drug candidates over the past decades, can bind in the DNA minor groove, inhibit the duplication of morbid sequences, and fight against a number of human and animal diseases. In this paper, on the basis of the binding models of a series of diamidines with DNA, the important influencing factors for the binding affinity of diamidines with DNA were systematically analyzed. The obtained results demonstrated that the curvature, length, distal group, and heteroaromatic ring of diamidine are four important factors, which could influence their binding affinities. Specifically, the better the curvature of the diamidine fits DNA minor groove, the higher the binding affinity is; increasing the molecular length within a certain range can make the binding affinity higher; changing the distal group of diamidine from amidino to imidazole or pyrimidine is favorable for improving the corresponding binding affinity; and the introduction of central heteroaromatic rings of diamidine molecules influences their binding affinities. One diamidine (named as DB103d) with ideal DNA binding affinity validates the four important factors proposed in the present work. The results obtained in this work might be helpful for the design of new efficient diamidine-based drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gottesfeld JM, Neely L, Trauger JW, Baird EE, Dervan PB (1997) Nature 387:202

    Article  CAS  Google Scholar 

  2. Neidle S (2001) Nat Prod Rep 18:291

    Article  CAS  Google Scholar 

  3. Dervan PB, Edelson BS (2003) Curr Opin Struc Biol 13:284

    Article  CAS  Google Scholar 

  4. Uil TG, Haisma HJ, Rots MG (2003) Nucleic Acids Res 31:6064

    Article  CAS  Google Scholar 

  5. Melander C, Burnett R, Gottesfeld JM (2004) J Biotechnol 112:195

    Article  CAS  Google Scholar 

  6. Dervan PB, Doss RM, Marques MA (2005) Curr Med Chem Anticancer Agents 5:373

    Article  CAS  Google Scholar 

  7. Nickols NG, Dervan PB (2007) Proc Natl Acad Sci USA 104:10418

    Article  CAS  Google Scholar 

  8. Nickols NG, Jacobs CS, Farkas ME, Dervan PB (2007) ACS Chem Biol 2:561

    Article  CAS  Google Scholar 

  9. Stafford RL, Arndt H-D, Brezinski ML, Ansari AZ, Dervan PB (2007) J Am Chem Soc 129:2660

    Article  CAS  Google Scholar 

  10. Zhu YY, He J, Shi QZ, Yang B, Tang MS (2011) Comput Theor Chem 977:88

    Article  Google Scholar 

  11. Hannon MJ (2007) Chem Soc Rev 36:280

    Article  CAS  Google Scholar 

  12. Nguyen B, Hamelberg D, Bailly C, Colson P, Stanek J, Brun R, Neidle S, Wilson WD (2004) Biophys J 86:1028

    Article  CAS  Google Scholar 

  13. Doua F, Miezan TW, Sanon Singaro JR, Boa Yapo F, Baltz T (1996) Am J Trop Med Hyg 55:586

    CAS  Google Scholar 

  14. Soeiro MNC, De Souza EM, Stephens CE, Boykin DW (2005) Expert Opin Inv Drug 14:957

    Article  CAS  Google Scholar 

  15. Wilson WD, Nguyen B, Tanious FA, Mathis A, Hall JE, Stephens CE, Boykin DW (2005) Curr Med Chem Anticancer Agents 5:389

    Article  CAS  Google Scholar 

  16. Denison C, Kodadek T (1998) Chem Biol 5:129

    Article  Google Scholar 

  17. Xiang Q-X, Chen J-X, Yang X-R, Cai X-R, Xiong J-R (2008) Chin J Org Chem 28:1223

    CAS  Google Scholar 

  18. Ghani RA, Kaur N, Phanstiel O, Wallace HM (2010) Toxicology 278:373

    Article  Google Scholar 

  19. de Souza EM, Lansiaux A, Bailly C, Wilson WD, Hu Q, Boykin DW, Batista MM, Araújo-Jorge TC, Soeiro MNC (2004) Biochem Pharmacol 68:593

    Article  Google Scholar 

  20. Bailly C, Tardy C, Wang L, Armitage B, Hopkins K, Kumar A, Schuter GB, Boykin DW, Wilson WD (2001) Biochemistry 40:9770

    Article  CAS  Google Scholar 

  21. Li Y, Wu Y, Zhao J, Yang P (2007) J Inorg Biochem 101:283

    Article  CAS  Google Scholar 

  22. Sasagase T, Arai T, Kuwahara M, Ozaki H, Sawai H (2007) Nucleic Acids Symp Ser (Oxf) 51:193

  23. Bazzicalupi C, Chioccioli M, Sissi C, Porcu E, Bonaccini C, Pivetta C, Bencini A, Giorgi C, Valtancoli B, Melani F, Gratteri P (2010) Chem Med Chem 5:1995

    Article  CAS  Google Scholar 

  24. Tyagi G, Jangir DK, Singh P, Mehrotra R (2010) DNA Cell Biol 29:693

    Article  CAS  Google Scholar 

  25. Miao Y, Lee MPH, Parkinson GN, Batista-Parra A, Ismail MA, Neidle S, Boykin DW, Wilson WD (2005) Biochemistry 44:14701

    Article  CAS  Google Scholar 

  26. Athri P, Wilson WD (2009) J Am Chem Soc 131:7618

    Article  CAS  Google Scholar 

  27. Munde M, Lee M, Neidle S, Arafa R, Boykin DW, Liu Y, Bailly C, Wilson WD (2007) J Am Chem Soc 129:5688

    Article  CAS  Google Scholar 

  28. Brooijmans N, Kuntz ID (2003) Annu Rev Biophys Biomol Struct 32:335

    Article  CAS  Google Scholar 

  29. Kontoyianni M, McClellan LM, Sokol GS (2004) J Med Chem 47:558

    Article  CAS  Google Scholar 

  30. Perola E, Walters WP, Charifson PS (2004) Proteins Struct Funct Bioinf 56:235

    Article  CAS  Google Scholar 

  31. Sousa SF, Fernandes PA, Ramos MJ (2006) Proteins Struct Funct Bioinf 65:15

    Article  CAS  Google Scholar 

  32. Hermann JC, Marti-Arbona R, Fedorov AA, Fedorov E, Almo SC, Shoichet BK, Raushel FM (2007) Nature 448:775

    Article  CAS  Google Scholar 

  33. Hou X, Du J, Zhang J, Du L, Fang H, Li M (2013) J Chem Inf Model 53:188

    Article  CAS  Google Scholar 

  34. Goodsell DS, Olson AJ (1990) Proteins 8:195

    Article  CAS  Google Scholar 

  35. Goodsell DS, Morris GM, Olson AJ (1996) J Mol Recognit 9:1

    Article  CAS  Google Scholar 

  36. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) J Mol Biol 161:269

    Article  CAS  Google Scholar 

  37. Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID, Brooijmans N, Rizzo RC (2006) J Comput Aid Mol Des 20:601

    Article  CAS  Google Scholar 

  38. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Proteins Struct Funct Genet 52:609

    Article  CAS  Google Scholar 

  39. Verdonk ML, Chessari G, Cole JC, Hartshorn MJ, Murray CW, Nissink JWM, Taylor RD, Taylor R (2005) J Med Chem 48:6504

    Article  CAS  Google Scholar 

  40. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47:1739

    Article  CAS  Google Scholar 

  41. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47:1750

    Article  CAS  Google Scholar 

  42. Jain AN (2003) J Med Chem 46:499

    Article  CAS  Google Scholar 

  43. Jain AN (2007) J Comput Aid Mol Des 21:281

    Article  CAS  Google Scholar 

  44. Kramer B, Rarey M, Lengauer T (1999) Proteins 37:228

    Article  CAS  Google Scholar 

  45. Chen R, Li L, Weng ZP (2003) Proteins Struct Funct Genet 52:80

    Article  CAS  Google Scholar 

  46. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) J Comput Aid Mol Des 10:293

    Article  CAS  Google Scholar 

  47. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639

    Article  CAS  Google Scholar 

  48. Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Proteins Struct Funct Genet 46:34

    Article  CAS  Google Scholar 

  49. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) J Comput Chem 28:1145

    Article  CAS  Google Scholar 

  50. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785

    Article  CAS  Google Scholar 

  51. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235

    Article  CAS  Google Scholar 

  52. Lee C, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  53. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  54. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford

    Google Scholar 

  56. Kosenkov D, Kholod Y, Gorb L, Shishkin OV, Hovoruna DM, Mons M, Leszczynski J (2009) J Phys Chem B 113:6140

    Article  CAS  Google Scholar 

  57. Samijlenko SP, Yurenko YP, Stepanyugin AV, Hovoruna DM (2010) J Phys Chem B 114:1454

    Article  CAS  Google Scholar 

  58. Furmanchuk A, Isayev O, Gorb L, Shishkin OV, Hovoruna DM, Leszczynski J (2011) Phys Chem Chem Phys 13:4311

    Article  CAS  Google Scholar 

  59. Brovarets’ OO, Hovoruna DM (2013) J Comput Chem 34:2577

    Article  Google Scholar 

  60. Brovarets’ OO, Zhurakivsky RO, Hovoruna DM (2013) Chem Phys Lett 578:126

    Article  Google Scholar 

  61. Brovarets’ OO, Hovoruna DM (2013) Phys Chem Chem Phys 15:20091

    Article  Google Scholar 

  62. Brovarets’ OO, Hovoruna DM (2014) J Biomol Struct Dynam 32:1474

    Article  Google Scholar 

  63. Brovarets’ OO, Hovoruna DM (2015) J Biomol Struct Dynam 33:28

    Article  Google Scholar 

  64. Brovarets’ OO, Hovoruna DM (2010) Biopol Cell 26:295

    Article  Google Scholar 

  65. Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14. University of California, San Francisco

    Google Scholar 

  66. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) J Comput Chem 24:1999

    Article  CAS  Google Scholar 

  67. Lee MC, Duan Y (2004) Proteins 55:620

    Article  CAS  Google Scholar 

  68. Wang J, Wolf RM, Caldwell JW, Kollamn PA, Case DA (2004) J Comput Chem 25:1157

    Article  CAS  Google Scholar 

  69. Wei W, Lim WA, Jakalian A, Wang J, Wang JM, Luo R, Bayly CI, Kollman PA (2001) J Am Chem Soc 123:3986

    Article  Google Scholar 

  70. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) J Am Chem Soc 120:9401

    Article  CAS  Google Scholar 

  71. Yang B, Zhu YY, Wang Y, Chen GJ (2011) J Comput Chem 32:416

    Article  Google Scholar 

  72. Nguyen B, Tardy C, Bailly C, Colson P, Houssier C, Kumar A, Boykin DW, Wilson WD (2002) Biopolymers 63:281

    Article  CAS  Google Scholar 

  73. Mathis AM, Bridges AS, Ismail MA, Kumar A, Francesconi I, Anbazhagan M, Hu Q, Tanious FA, Wenzler T, Saulter J, Wilson WD, Brun R, Boykin DW, Tidwell RR, Hall JE (2007) Antimicrob Agents Chemother 51:2801

    Article  CAS  Google Scholar 

  74. Shundo A, Sakurai T, Takafuji M, Nagaoka S, Ihara H (2005) J Chromatogr A 1073:169

    Article  CAS  Google Scholar 

  75. Wells G, Martin CRH, Howard PW, Sands ZA, Laughton CA, Tiberghien A, Woo CK, Masterson LA, Stephenson MJ, Hartley JA, Jenkins TC, Shnyder SD, Loadman PM, Waring MJ, Thurston DE (2006) J Med Chem 49:5442

    Article  CAS  Google Scholar 

  76. Torikai K, Oishi T, Ujihara S, Matsumori N, Konoki K, Murata M, Aimoto S (2008) J Am Chem Soc 130:10217

    Article  CAS  Google Scholar 

  77. Carr PW, Dolan JW, Neue UD, Snyder LR (2011) J Chromatogr A 1218:1724

    Article  CAS  Google Scholar 

  78. Sato Y, Yoshioka K, Murakami T, Yoshimoto S, Niwa O (2012) Langmuir 28:1846

    Article  CAS  Google Scholar 

  79. Boykin DW, Kumar A, Xiao G, Wilson WD, Bender BC, McCurdy DR, Hall JE, Tidwell RR (1998) J Med Chem 41:124

    Article  CAS  Google Scholar 

  80. Simpson IJ, Lee M, Kumar A, Boykin DW, Neidle S (2000) Bioorg Med Chem Lett 10:2593

    Article  CAS  Google Scholar 

  81. Brovarets’ OO, Yurenko YP, Hovoruna DM (2014) J Biomol Struct Dynam 32:993

    Article  Google Scholar 

  82. Brovarets’ OO, Yurenko YP, Hovoruna DM (2014) J Biomol Struct Dynam. doi:10.1080/07391102.2014.968623

    Google Scholar 

  83. Brovarets’ OO, Hovoruna DM (2014) J Biomol Struct Dynam 32:127

    Article  Google Scholar 

  84. Brovarets’ OO, Yurenko YP, Dubey IY, Hovoruna DM (2012) J Biomol Struct Dynam 29:1101

    Article  Google Scholar 

  85. Shishkin OV, Pelmenschikov A, Hovoruna DM, Leszczynski J (2000) Chem Phys 260:317

    Article  CAS  Google Scholar 

  86. Nikolaienko TY, Bulavin LA, Hovoruna DM (2011) J Biomol Struct Dynam 29:563

    Article  CAS  Google Scholar 

  87. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Hovoruna DM (2011) J Biomol Struct Dynam 29:51

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 21001095).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanyan Zhu, Wenjing Zhang or Mingsheng Tang.

Additional information

Chen Song and Xuening Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Zhang, X., Li, F. et al. Theoretical study of binding affinity for diamidine with DNA. Struct Chem 27, 681–696 (2016). https://doi.org/10.1007/s11224-015-0610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0610-z

Keywords

Navigation