Skip to main content
Log in

Experimental study of electron density distribution in crystals of antimony(V) dicarboxylate complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecular structure and charge density distribution in the crystals of triphenylantimony bis[(2E)-3-phenylprop-2-enoate] [Ph3Sb(O2CCH=CHPh)2] and triphenylantimony bis[(2E)-3-(3-nitrophenyl)prop-2-enoate] benzene solvate [Ph3Sb(O2CCH=CHC6H4NO2-m)2·C6H6] derived from the high-resolution single-crystal X-ray diffraction data at 100 K are reported together with DFT calculations of these molecules. The nature of the chemical bonds and delocalization of electron density in carboxylate ligands was investigated. The intramolecular Sb···O interactions as well as intermolecular π···π, H···π and O···π ones and their energy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Koton MM (1985) Metalloorganicheskie soedineniya i radikaly (Organometallic Compounds and Radicals). Nauka, p. 13

  2. US Patent no. 3.287.210 (C1 167–30), November 22, 1966, Appl. December 26, 1967, 66(19):85070

  3. Carraher C, Morgan M (1981) Metalloorganicheskie polimery (Organometallic Polymers). Mir, Moscow

    Google Scholar 

  4. Yamago S (2009) Chem Rev 109:5051–5068

    Article  CAS  Google Scholar 

  5. Bajpai K, Singhal R, Srivastava RC (1979) Indian J Chem 18A:73

    CAS  Google Scholar 

  6. Singhal K, Rastogi R, Raj P (1987) Indian J Chem 26A:146

    CAS  Google Scholar 

  7. Ma YQ, Li JS, Xuan ZN, Liu RC (2001) J Organomet Chem 620:235–242

    Article  CAS  Google Scholar 

  8. Li JS, Ma YQ, Cui JR, Wang RQ (2001) Appl Organomet Chem 15:639–645

    Article  CAS  Google Scholar 

  9. Lin Y, Ma Y-Q, Wang G-C, Li J-S (2004) Heteroat Chem 15:32–36

    Article  Google Scholar 

  10. Qin W, Yasuike S, Kakusawa N, Sugawara Y, Kawahata M, Yamaguchi K, Kurita J (2008) J Organomet Chem 693:109–116

    Article  CAS  Google Scholar 

  11. Gushchin AV, Moiseev DV, Dodonov VA (2001) Russ Chem Bull 50:1291–1294

    Article  CAS  Google Scholar 

  12. Gushchin AV, Moiseev DV, Dodonov VA (2002) Russ J Gen Chem 72:1571–1575

    Article  CAS  Google Scholar 

  13. Moiseev DV, Gushchin AV, Shavirin AS, Kursky YA, Dodonov VA (2003) J Organomet Chem 667:176–184

    Article  CAS  Google Scholar 

  14. Moiseev DV, Morugova VA, Gushchin AV, Dodonov VA (2003) Tetrahedron Lett 44:3155–3157

    Article  CAS  Google Scholar 

  15. Dodonov VA, Gushchin AV, Brilkina TG (1985) Zh Obshch Khim 55:73–80

    CAS  Google Scholar 

  16. Sharutin VV, Sharutina OK, Pakusina AP, Belsky VK (1997) Zh Obshch Khim 9:1536–1541

    Google Scholar 

  17. Sheldrick GM SHELXTL v. 6.12 (2000) Structure determination software suite. Bruker AXS, Madison

  18. SCALE3 ABSPACK: Empirical absorption correction (2012) CrysAlis Pro-Software Package, Agilent Technologies

  19. Hansen NK, Coppens P (1978) Acta Crystallogr A 34:909–921

    Article  Google Scholar 

  20. Jelsch C, Guillot B, Lagoutte A, Lecomte C (2005) J Appl Crystallogr 38:38–54

    Article  Google Scholar 

  21. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor RJ (1987) Chem Soc Perkin Trans 2:S1–19

    Article  Google Scholar 

  22. Hirshfeld FL (1976) Acta Crystallogr Sect A 32:239–244

    Article  Google Scholar 

  23. Stash A, Tsirelson VJ (2002) Appl Crystallogr 35:371–373

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B (2004) Gaussian 03, revision C.02, Gaussian, Inc, Wallingford

  25. Keith TA AIMAll (2014) Version 14.06.21, TK Gristmill Software, Overland Park KS, USA aim.tkgristmill.com

  26. Wen L, Yin H, Li W, Wang D (2010) Inorg Chim Acta 363:676–684

    Article  CAS  Google Scholar 

  27. Barucki H, Coles SJ, Costello JF, Gelbrich T, Hursthouse MB (2000) J Chem Soc, Dalton Trans 14:2319–2325

    Article  Google Scholar 

  28. Gushchin AV, Shashkin DV, Prytkova LK, Somov NV, Baranov EV, Shavyrin AS, Rykalin VI (2011) Zh Obshch Khim 81:397–400

    Google Scholar 

  29. Ferguson G, Kaitner B (1991) J Organomet Chem 419:283–291

    Article  CAS  Google Scholar 

  30. Barucki H, Coles SJ, Costello JF, Hursthouse MB (2003) Chem Eur J 9:2877–2884

    Article  CAS  Google Scholar 

  31. Batsanov SS (1991) Rus J Inorg Chem 36:1694

    Google Scholar 

  32. Fukin GK, Baranov EV, Jelsch C, Guillot B, Poddel’sky AI, Cherkasov VK, Abakumov GA (2011) J Phys Chem A 115:8271–8281

    Article  CAS  Google Scholar 

  33. Cremer D, Kraka E, Slee TS, Bader RFW, Lau DCH (1983) J Am Chem Soc 105:5061–5068

    Article  Google Scholar 

  34. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  35. Fukin GK, Baranov EV, Jelsch C, Guillot B, Poddel’sky AI, Cherkasov VK, Abakumov GA (2011) J Phys Chem A 115:8271–8281

    Article  CAS  Google Scholar 

  36. Espinosa E, Molins E, Lecomte C (1988) Chem Phys Lett 285:170–173

    Article  Google Scholar 

  37. Matta F, Hernández-Trujillo J, Tang TH, Bader RFW (2003) Chem Eur J 9:940–1951

    Google Scholar 

  38. Grabowski SJ, Sokalski WA, Leszczynski J (2007) Chem Phys 337:68–76

    Article  CAS  Google Scholar 

  39. Cukrowski I, Matta CF (2010) Chem Phys Lett 499:66–69

    Article  CAS  Google Scholar 

  40. Cioslowski J, Mixon ST, Edwards WD (1991) J Am Chem Soc 113:1083–1085

    Article  CAS  Google Scholar 

  41. Cioslowski J, Mixon ST (1992) J Am Chem Soc 114:4382–4387

    Article  CAS  Google Scholar 

  42. Cioslowski J, Mixon ST (1992) Can J Chem 70:443–449

    Article  CAS  Google Scholar 

  43. Cioslowski J, Edgington L, Boris BJ (1995) Am Chem Soc 117(41):10381–10384

    Article  CAS  Google Scholar 

  44. Haaland A, Shorokhov DJ, Tverdova NV (2004) Chem Eur J 10:4416–4421

    Article  CAS  Google Scholar 

  45. Tatyana S, Arne H (2008) Chem Eur J 14:10223–10226

    Article  Google Scholar 

  46. Krapp A, Frenking G (2007) Chem Eur J 13:8256–8270

    Article  CAS  Google Scholar 

  47. Cerpa E, Krapp A, Vela A, Merino G (2008) Chem Eur J 14:10232–10234

    Article  CAS  Google Scholar 

  48. Cerpa E, Krapp A, Flores-Moreno R, Donald KJ, Merino G (2009) Chem Eur J 15:1985–1990

    Article  CAS  Google Scholar 

  49. Poater J, Solà M, Bickelhaupt FM (2006) Chem Eur J 12:2889–2895

    Article  CAS  Google Scholar 

  50. Poater J, Solà M, Bickelhaupt FM (2006) Chem Eur J 12:2902–2905

    Article  CAS  Google Scholar 

  51. Jabłoński M, Palusiak M (2013) Chem Phys 415:207–213

    Article  Google Scholar 

  52. Janiak C (2000) J Chem Soc, Dalton Trans 21:3885–3896

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by fund competitive support students, postgraduate students and young scientific-teaching staff Lobachevsky Nizhny Novgorod State University and Russian Foundation for Basic Research (Project Nos. 13-03-00891, 14-03-31625). Also work was partly supported by the Grant (The agreement of August 27, 2013 No. 02.B.49.21.0003 between the Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhny Novgorod).

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgy K. Fukin.

Additional information

Dedicated to the memory of Prof. O.V. Shishkin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukin, G.K., Samsonov, M.A., Kalistratova, O.S. et al. Experimental study of electron density distribution in crystals of antimony(V) dicarboxylate complexes. Struct Chem 27, 357–365 (2016). https://doi.org/10.1007/s11224-015-0604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0604-x

Keywords

Navigation