Skip to main content
Log in

DFT investigations on the structure and properties of MBP dimers and crystal with strong hydrogen-bonding interactions

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Theoretical studies on the monomers, dimers, and crystal of the prototypical bisphosphonic acid, methylenebisphosphonic acid (MBP), were performed at different density functional theory levels. The hydrogen bonding, interaction energy, thermodynamic property, lattice energy, and electronic structure were investigated. Five stable dimers were identified through the intermolecular hydrogen-bonding interaction, and the stability order was estimated by the interaction energies. For the most stable dimer, the interaction energy is −170.86 kJ/mol at the M06-2X/6-311++G** level, while that for the least stable dimer is −46.74 kJ/mol. At 298.15 K, the changes of Gibbs free energies (∆G) for the dimerization processes of five dimers are all negative (−122.72, −85.09, −8.46, −114.02, and −100.70 kJ/mol), suggesting these dimers can be spontaneously produced from the isolated monomer at room temperature. The stability order of dimers derived from the ∆G T values agrees well with that determined by the interaction energies. The lattice energy for the crystalline MBP was predicted to be −828.90 and −899.79 kJ/mol by GGA/PBE and GGA/PW91, respectively, whereas it was overestimated by LDA/CA–PZ (−1319.72 kJ/mol). The band structure calculations indicate that MBP is a wide-gap insulator with a band gap of more than 6.0 eV. The charge distribution and bonding overlap populations show that the bond strength of O–H is less than other bonds due to taking part in the formation of intermolecular hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of action. J Clin Invest 97:2692–2696

    Article  CAS  Google Scholar 

  2. Russell RGG (2011) Bisphosphonates: the first 40 years. Bone 49:2–19

    Article  CAS  Google Scholar 

  3. Heymann D, Ory B, Gouin F, Green JR, Redini F (2004) Bisphosphonates: new therapeutic agents for the treatment of bone tumors. Trends Mol Med 10:337–343

    Article  CAS  Google Scholar 

  4. Stresing V, Daubine F, Benzaid I, Monkkonen H, Clezardin P (2007) Bisphosphonates in cancer therapy. Cancer Lett 257:16–35

    Article  CAS  Google Scholar 

  5. Lipton A (2011) Improving progression-free and overall survival in patients with cancer: a potential role for bisphosphonates. Expert Opin Pharmacother 12:749–762

    Article  CAS  Google Scholar 

  6. Hampson G, Fogelman I (2012) Clinical role of bisphosphonate therapy. Int J Women’s Health 4:455–469

    CAS  Google Scholar 

  7. Pascaud P, Gras P, Coppel Y, Rey C, Sarda S (2013) Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites. Langmuir 29:2224–2232

    Article  CAS  Google Scholar 

  8. El Moll H, Dolbecq A, Mbomekalle IM, Marrot J, Deniard P, Dessapt R, Mialane P (2012) Tuning the photochromic properties of molybdenum bisphosphonate polyoxometalates. Inorg Chem 51:2291–2302

    Article  Google Scholar 

  9. Queffélec C, Petit M, Janvier P, Knight DA, Bujoli B (2012) Surface modification using phosphonic acids and esters. Chem Rev 112:3777–3807

    Article  Google Scholar 

  10. Widler L, Jaeggi KA, Glatt M, Müller K, Bachmann R, Bisping M, Born A-R, Cortesi R, Guiglia G, Jeker H, Klein R, Ramseier U, Schmid J, Schreiber G, Seltenmeyer Y, Green JR (2002) Highly potent geminal bisphosphonates. From pamidronate disodium (aredia) to zoledronic acid (zometa). J Med Chem 45:3721–3738

    Article  CAS  Google Scholar 

  11. Zhang Y, Leon A, Song Y, Studer D, Haase C, Koscielski LA, Oldfield E (2006) Activity of nitrogen-containing and non-nitrogen-containing bisphosphonates on tumor cell lines. J Med Chem 49:5804–5814

    Article  CAS  Google Scholar 

  12. Marma MS, Xia Z, Stewart C, Coxon F, Dunford JE, Baron R, Kashemirov BA, Ebetino FH, Triffitt JT, Russell RGG, McKenna CE (2007) Synthesis and biological evaluation of α-halogenated bisphosphonate and phosphonocarboxylate analogues of risedronate. J Med Chem 50:5967–5975

    Article  CAS  Google Scholar 

  13. Granchi D, Scarso A, Bianchini G, Chiminazzo A, Minto A, Sgarbossa P, Michelin RA, Di Pompo G, Avnet S, Strukul G (2013) Low toxicity and unprecedented anti-osteoclast activity of a simple sulfur-containing gem-bisphosphonate: a comparative study. Eur J Med Chem 65:448–455

    Article  CAS  Google Scholar 

  14. Ebetino FH, Hogan A-ML, Sun S, Tsoumpra MK, Duan X, Triffitt JT, Kwaasi AA, Dunford JE, Barnett BL, Oppermann U, Lundy MW, Boyde A, Kashemirov BA, McKenna CE, Russell RGG (2011) The relationship between the chemistry and biological activity of the bisphosphonates. Bone 49:20–33

    Article  CAS  Google Scholar 

  15. Dunford JE, Kwaasi AA, Rogers MJ, Barnett BL, Ebetino FH, Russell RGG, Oppermann U, Kavanagh KL (2008) Structure-activity relationships among the nitrogen containing bisphosphonates in clinical use and other analogues: time-dependent inhibition of human farnesyl pyrophosphate synthase. J Med Chem 51:2187–2195

    Article  CAS  Google Scholar 

  16. Lin JG, Luo SN, Chen CQ, Qiu L, Wang Y, Cheng W, Ye WZ, Xia YM (2010) Preparation and preclinical pharmacological study on a novel bone imaging agent 99mTc-EMIDP. Appl Radiat Isot 68:1616–1622

    Article  CAS  Google Scholar 

  17. Lin JG, Qiu L, Cheng W, Luo SN, Ye WZ (2011) Preparation and in vivo biological investigations on a novel radioligand for bone scanning: technetium-99 m-labeled zoledronic acid derivative. Nucl Med Biol 38:619–629

    Article  CAS  Google Scholar 

  18. Qiu L, Lin JG, Luo SN, Wang Y, Cheng W, Zhang S (2012) A novel 99mTc-labeled dimethyl-substituted zoledronic acid (DMIDP) with improved bone imaging efficiency. Radiochim Acta 100:463–471

    Article  CAS  Google Scholar 

  19. Qiu L, Cheng W, Lin JG, Chen LP, Yao J, Luo SN (2012) Synthesis and biological evaluation of a series of 99mTc-labeled diphosphonates as novel radiotracers with improved bone imaging. J Label Compd Radiopharm 55:429–435

    Article  CAS  Google Scholar 

  20. Qiu L, Cheng W, Lin JG, Chen LP, Yao J, Pu WW, Luo SN (2013) Synthesis and evaluation of a series of Tc-99m-labelled zoledronic acid derivatives as potential bone seeking agents. J Radioanal Nucl Chem 295:545–552

    Article  CAS  Google Scholar 

  21. Qiu L, Lin JG, Cheng W, Wang Y, Luo SN (2013) 99mTc-labeled butyl-substituted zoledronic acid as a novel potential SPECT imaging agent: preparation and preclinical pharmacology study. Med Chem Res 22:6154–6162

    Article  CAS  Google Scholar 

  22. Qiu L, Lin JG, Wang LQ, Cheng W, Cao Y, Liu XW, Luo SN (2014) A series of imidazolyl-containing bisphosphonates with abundant hydrogen-bonding interactions: syntheses, structures, and bone-binding affinity. Aust J Chem 67:192–205

    CAS  Google Scholar 

  23. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  24. Yan XC, Schyman P, Jorgensen WL (2014) Cooperative effects and optimal halogen bonding motifs for self-assembling systems. J Phys Chem A 118:2820–2826

    Article  CAS  Google Scholar 

  25. Sharma A, Harnish P, Sylvester A, Kotov VN, Neto AHC (2014) van der Waals forces and electron-electron interactions in two strained graphene layers. Phys Rev B 89:235425–235432

    Article  Google Scholar 

  26. Chen J, Brooks CL, Scheraga HA (2007) Revisiting the carboxylic acid dimers in aqueous solution: interplay of hydrogen bonding, hydrophobic interactions, and entropy. J Phys Chem B 112:242–249

    Article  Google Scholar 

  27. Walmsley JA (1984) Self-association of phosphinic acids in nonpolar solvents. The origin of the apparent dipole moment in symmetric dimers. J Phys Chem 88:1226–1231

    Article  CAS  Google Scholar 

  28. Ju XH, Xiao HM, Xia QY (2003) A density functional theory investigation of 1,1-diamino-2,2-dinitroethylene dimers and crystal. J Chem Phys 119:10247–10255

    Article  CAS  Google Scholar 

  29. Xiao HM, Ju XH, Xu LN, Fang GY (2004) A density-functional theory investigation of 3-nitro-1,2,4-triazole-5-one dimers and crystal. J Chem Phys 121:12523–12531

    Article  CAS  Google Scholar 

  30. Qiu L, Li WX, Fan XW, Ju XH, Cao GX, Luo SN (2008) Experimental and theoretical study on a novel supramolecular complex constructed from benzenetetracarboxylatic acid and 1,2,3,4-tetra(4-pyridlyl)thiophene. Inorg Chem Commun 11:727–729

    Article  CAS  Google Scholar 

  31. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  32. Brela M, Stare J, Pirc G, Sollner-Dolenc M, Boczar M, Wojcik MJ, Mavri J (2012) Car-Parrinello simulation of the vibrational spectrum of a medium strong hydrogen bond by two-dimensional quantization of the nuclear motion: application to 2-hydroxy-5-nitrobenzamide. J Phys Chem B 116:4510–4518

    Article  CAS  Google Scholar 

  33. Yu LJ, Pang R, Tao S, Yang HT, Wu DY, Tian ZQ (2013) Solvent effect and hydrogen bond interaction on tautomerism, vibrational frequencies, and raman spectra of guanine: a density functional theoretical study. J Phys Chem A 117:4286–4296

    Article  CAS  Google Scholar 

  34. Gonzalez L, Mo O, Yanez M, Elguero J (1998) Very strong hydrogen bonds in neutral molecules: the phosphinic acid dimers. J Chem Phys 109:2685–2693

    Article  CAS  Google Scholar 

  35. Joswig J-O, Hazebroucq S, Seifert G (2007) Properties of the phosphonic-acid molecule and the proton transfer in the phosphonic-acid dimer. J Mol Struct 816:119–123

    Article  CAS  Google Scholar 

  36. Rekik N, Ghalla H, Hanna G (2012) Explaining the structure of the OH stretching band in the IR spectra of strongly hydrogen-bonded dimers of phosphinic acid and their deuterated analogs in the gas phase: a computational study. J Phys Chem A 116:4495–4509

    Article  CAS  Google Scholar 

  37. Blanchard JW, Groy TL, Yarger JL, Holland GP (2012) Investigating hydrogen-bonded phosphonic acids with proton ultrafast MAS NMR and DFT calculations. J Phys Chem C 116:18824–18830

    Article  CAS  Google Scholar 

  38. DeLaMatter D, McCullough JJ, Calvo C (1973) Crystal structure of methylenediphosphonic acid. J Phys Chem 77:1146–1148

    Article  CAS  Google Scholar 

  39. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  40. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11-18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  41. Hill TL (1960) Introduction to statistical thermodynamics. Addision-Wesley Publishing Company, New York

    Google Scholar 

  42. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  43. Kendall RA, Dunning JTH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  44. Woon DE, Dunning JTH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT

  46. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  Google Scholar 

  47. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys 14:2717–2744

    CAS  Google Scholar 

  48. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  49. Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774

    Article  CAS  Google Scholar 

  50. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  51. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  52. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  53. Ceperley DM, Alder BJ (1980) Ground State of the electron gas by a Stochastic method. Phys Rev Lett 45:566–569

    Article  CAS  Google Scholar 

  54. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  55. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  56. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  57. Hobza P, Zahradnik R (1988) Intermolecular interactions between medium-sized systems. Nonempirical and empirical calculations of interaction energies. Successes and failures. Chem Rev 88:871–897

    Article  CAS  Google Scholar 

  58. Philp D, Stoddart JF (1996) Self-assembly in natural and unnatural systems. Angew Chem Int Edit 35:1154–1196

    Article  Google Scholar 

  59. Feyereisen MW, Feller D, Dixon DA (1996) Hydrogen bond energy of the water dimer. J Phys Chem 100:2993–2997

    Article  CAS  Google Scholar 

  60. Giacovazzo C (1992) Fundamentals of crystallography. Oxford University Press, New York

    Google Scholar 

  61. Chen C, Miao L, Xu K, Yao J, Li CY, Jiang JJ (2013) Electric field induced orientation-selective unzipping of zigzag carbon nanotubes upon oxidation. Phys Chem Chem Phys 15:6431–6436

    Article  CAS  Google Scholar 

  62. Harrison NM (2003) An introduction to density functional theory. In: Catlow CRA, Kotomin EA (eds) Computational materials science, NATO science series III. IOS Press, Amsterdam

    Google Scholar 

  63. Hoffmann R (1988) Solids and surfaces: a chemist’s view of bonding in the extended structures. VCH, New York

    Google Scholar 

  64. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions I. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  65. Boichenko A, Markov V, Kong H, Matveeva A, Loginova L (2009) Re-evaluated data of dissociation constants of alendronic, pamidronic and olpadronic acids. Cent Eur J Chem 7:8–13

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (20801024, 21371082), the Natural Science Foundation of Jiangsu Province (BK20141102), the Key Medical Talent Project of Jiangsu Province (RC2011097), and the Public Service Platform for Science and Technology Infrastructure Construction Project of Jiangsu Province (BM2012066) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Qiu or Jianguo Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Liu, Q., Wang, Y. et al. DFT investigations on the structure and properties of MBP dimers and crystal with strong hydrogen-bonding interactions. Struct Chem 26, 845–858 (2015). https://doi.org/10.1007/s11224-014-0553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0553-9

Keywords

Navigation