Skip to main content
Log in

A theoretical study of the binding mechanisms of atomic platinum on Be-, B-, N-, O-doped (6, 6) single-walled carbon nanotubes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the present work, density functional theory (DFT) is used to investigate the binding mechanism of atomic platinum on several heteroatom (Be, B, N, and O) doped (6, 6) single-walled carbon nanotubes. The binding abilities in ascending order by dopants are found to be pristine, nitrogen, boron, beryllium, and oxygen. The adsorption mechanisms of Pt on these nanotubes have been discussed based on the adsorption geometries, frontier orbitals, and projected density of states. Due to the unused binding site of the carbon atom created by O-doping, the O-doped CNT presents the strongest binding for atomic Pt. It is found that the degree of s-orbital of the carbon atom involved in the C–Pt bond could reflect the binding strength of Pt on these doped CNT supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cerri I, Nagami T, Davies J, Mormiche C, Vecoven A, Hayden B (2013) Innovative catalyst supports to address fuel cell stack durability. Int J Hydrog Energy 38(1):640–645

    Article  CAS  Google Scholar 

  2. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007

    Article  CAS  Google Scholar 

  3. Zhou Y, Neyerlin K, Olson TS, Pylypenko S, Bult J, Dinh HN, Gennett T, Shao Z, O’Hayre R (2010) Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ Sci 3(10):1437–1446

    Article  CAS  Google Scholar 

  4. Wang Y-J, Wilkinson DP, Zhang J (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem Rev 111(12):7625–7651

    Article  CAS  Google Scholar 

  5. Shao Y, Yin G, Wang Z, Gao Y (2007) Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 167(2):235–242

    Article  CAS  Google Scholar 

  6. Li W, Liang C, Qiu J, Zhou W, Han H, Wei Z, Sun G, Xin Q (2002) Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 40(5):791–794

    Article  CAS  Google Scholar 

  7. Shao Y, Yin G, Gao Y, Shi P (2006) Durability Study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J Electrochem Soc 153(6):A1093–A1097

    Article  CAS  Google Scholar 

  8. Zhang S, Shao Y, Yin G, Lin Y (2013) Recent progress in nanostructured electrocatalysts for PEM fuel cells. J Mater Chem A 1(15):4631–4641

    Article  CAS  Google Scholar 

  9. Ghasemi M, Ismail M, Kamarudin SK, Saeedfar K, Daud WRW, Hassan SH, Heng LY, Alam J, Oh S-E (2013) Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. Appl Energy 102:1050

    Article  CAS  Google Scholar 

  10. Liu M, Zhang R, Chen W (2014) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114(10):5117–5160

    Article  CAS  Google Scholar 

  11. Antolini E (2012) Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl Catal B Environ 123:52

    Article  Google Scholar 

  12. Park S, Shao Y, Wan H, Rieke PC, Viswanathan VV, Towne SA, Saraf LV, Liu J, Lin Y, Wang Y (2011) Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochem Commun 13(3):258–261

    Article  CAS  Google Scholar 

  13. Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113(19):7990–7995

    Article  CAS  Google Scholar 

  14. Xin Y, Liu J-g, Zhou Y, Liu W, Gao J, Xie Y, Yin Y, Zou Z (2011) Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. J Power Sources 196(3):1012–1018

    Article  CAS  Google Scholar 

  15. Jafri RI, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20(34):7114–7117

    Article  Google Scholar 

  16. Yang Z, Nie H, Chen Xa, Chen X, Huang S (2013) Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J Power Sources 236(15):238–249

    Article  CAS  Google Scholar 

  17. Wong W, Daud W, Mohamad A, Kadhum A, Loh K, Majlan E (2013) Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications. Int J Hydrog Energy 38(22):9370–9386

    Article  CAS  Google Scholar 

  18. Tuaev X, Paraknowitsch JP, Illgen R, Thomas A, Strasser P (2012) Nitrogen-doped coatings on carbon nanotubes and their stabilizing effect on Pt nanoparticles. Phys Chem Chem Phys 14(18):6444–6447

    Article  Google Scholar 

  19. Chen YG, Wang JJ, Liu H, Banis MN, Li RY, Sun XL, Sham T-K, Ye SY, Knights S (2011) Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electrocatalytic activity of supported Pt for proton-exchange membrane fuel cells. J Phys Chem C 115(9):3769–3776

    Article  CAS  Google Scholar 

  20. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764

    Article  CAS  Google Scholar 

  21. Shao YY, Sui JH, Yin GP, Gao YZ (2008) Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl Catal B Environ 79(1):89–99

    Article  CAS  Google Scholar 

  22. Chen G, Kawazoe Y (2006) Interaction between a single Pt atom and a carbon nanotube studied by density functional theory. Phys Rev B 73(12):125410

    Article  Google Scholar 

  23. Chi DH, Cuong NT, Tuan NA, Kim Y-T, Bao HT, Mitani T, Ozaki T, Nagao H (2006) Electronic structures of Pt clusters adsorbed on (5, 5) single wall carbon nanotube. Chem Phys Lett 432(1):213–217

    Article  CAS  Google Scholar 

  24. Cuong NT, Sugiyama A, Fujiwara A, Mitani T, Chi DH (2009) Density functional study of Pt4 clusters adsorbed on a carbon nanotube support. Phys Rev B 79(23):235417

    Article  Google Scholar 

  25. Dam HC, Cuong NT, Sugiyama A, Ozaki T, Fujiwara A, Mitani T, Okada S (2009) Substrate-mediated interactions of Pt atoms adsorbed on single-wall carbon nanotubes: density functional calculations. Phys Rev B 79(11):115426

    Article  Google Scholar 

  26. Li Y-H, Hung T-H, Chen C-W (2009) A first-principles study of nitrogen-and boron-assisted platinum adsorption on carbon nanotubes. Carbon 47(3):850–855

    Article  CAS  Google Scholar 

  27. Feng H, Ma J, Hu Z (2010) Nitrogen-doped carbon nanotubes functionalized by transition metal atoms: a density functional study. J Mater Chem 20(9):1702–1708

    Article  CAS  Google Scholar 

  28. Hayes KE, Lee H-S (2012) First principles studies of the electronic properties and catalytic activity of single-walled carbon nanotube doped with Pt clusters and chains. Chem Phys 393(1):96–106

    Article  CAS  Google Scholar 

  29. Ganji MD, Ahangari MG, Khosravi A (2014) Doping of carbon nanotubes with aluminum atom to improve Pt adsorption. Appl Surf Sci 290(30):86–91

    Article  CAS  Google Scholar 

  30. Groves MN, Malardier-Jugroot C, Jugroot M (2012) Improving platinum catalyst durability with a doped graphene support. J Phys Chem C 116(19):10548–10556

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford

    Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  33. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  34. Rochefort A, Salahub DR, Avouris P (1999) Effects of finite length on the electronic structure of carbon nanotubes. J Phys Chem B 103(4):641–646

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchun Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Tong, Y. & Xu, X. A theoretical study of the binding mechanisms of atomic platinum on Be-, B-, N-, O-doped (6, 6) single-walled carbon nanotubes. Struct Chem 26, 815–822 (2015). https://doi.org/10.1007/s11224-014-0551-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0551-y

Keywords

Navigation