Skip to main content
Log in

The electronic response of nano-sized tube of BeO to CO molecule: a density functional study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

On the basis of density functional theory calculations, we have investigated the structural and electronic properties of the adsorption of one to four CO molecules on the exterior surface of a BeO nanotube (BeONT). It was found that a CO molecule prefers to be attached to a Be atom of the tube surface from its carbon head, releasing energy of 10.47 kcal/mol. Density of states analysis shows that HOMO/LUMO energy gap of the tube is highly sensitive to CO molecule so that it decreased by about 1.76 eV upon the adsorption of one molecule. The E g of CO/BeONT is decreased by increasing the number of the adsorbed CO molecules, indicating that it is also sensitive to the concentration of CO molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhuiykov S, Wlodarski W, Li Y (2001) Nanocrystalline V2O5–TiO2 thin-films for oxygen sensing prepared by sol–gel process. Sens Actuators B 77:484

    Article  CAS  Google Scholar 

  2. Malavasi L, Tealdi C, Montenero A, Tulliani JM, Moggi P, Guglielmi M, Flor G, Lorenzi A, Martucci A, Montanaro L (2006) Materials development for CO-detection with improved selectivity through catalytic activation. Sens Actuators B 118:121

    Article  CAS  Google Scholar 

  3. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) A theoretical study of CO adsorption on aluminum nitride nanotubes. Struct Chem 23:653

    Article  CAS  Google Scholar 

  4. Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G (2009) Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Progress in Mater Sci 54:1

    Article  CAS  Google Scholar 

  5. Beheshtian J, Kamfiroozi M, Bagheri Z, Ahmadi A (2011) Computational study of CO and NO adsorption on magnesium oxide nanotubes. Physica E 44:546

    Article  CAS  Google Scholar 

  6. Beheshtian J, Ahmadi Peyghan A, Bagheri Z (2013) Ab initio study of NH3 and H2O adsorption on pristine and Na-doped MgO nanotubes. Struct Chem 24:165

    Article  CAS  Google Scholar 

  7. Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568:28

    Article  CAS  Google Scholar 

  8. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: How to? Sens Actuators B 121:18

    Article  CAS  Google Scholar 

  9. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  10. Terao T, Bando Y, Mitome M, Kurashima K, Zhi CY, Tang CC, Golberg D (2008) Effective synthesis of surface-modified boron nitride nanotubes and related nanostructures and their hydrogen uptake. Physica E 40:2551

    Article  CAS  Google Scholar 

  11. Keller N, Pham-Huu C, Ehret G, Keller V, Ledoux MJ (2003) Synthesis and characterisation of medium surface area silicon carbide nanotubes. Carbon 41:2131

    Article  CAS  Google Scholar 

  12. Chen L, Xu C, Zhang XF, Zhou T (2009) Raman and infrared-active modes in MgO nanotubes. Physica E 41:852

    Article  CAS  Google Scholar 

  13. Zhang P, Crespi VH (2002) Theory of B2O and BeB2 nanotubes: new semiconductors and metals in one dimension. Phys Rev Lett 89:056403

    Article  Google Scholar 

  14. Fathalian A, Moradian R, Shahrokhi M (2013) Optical properties of BeO nanotubes: Ab initio study. Solid State Commun 156:1

    Article  CAS  Google Scholar 

  15. Gorbunova MA, Shein IR, Makurin YN, Ivanovskaya VV, Kijko VS, Ivanovskii AL (2008) Electronic structure and magnetism in BeO nanotubes induced by boron, carbon and nitrogen doping, and beryllium and oxygen vacancies inside tube walls. Physica E 41:164

    Article  CAS  Google Scholar 

  16. Duman S, Sutlu A, Bagcl S, Tutuncu HM, Srivastava GP (2009) Structural, elastic, electronic, and phonon properties of zinc-blende and wurtzite BeO. J Appl Phys 105:033719

    Article  Google Scholar 

  17. Sorokin PB, Fedorov AS, Chernozatonskii LA (2006) Structure and properties of BeO nanotubes. Phys Solid State 48:398

    Article  CAS  Google Scholar 

  18. Baumeier B, Kruger P, Pollmann J (2007) Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phy Rev B 76:085407

    Article  Google Scholar 

  19. An S, Park S, Ko H, Jin C, Lee WI, Lee C (2013) Enhanced ethanol sensing properties of multiple networked Au-doped In2O3 nanotube sensors. J Phys Chem Solids 74:979

    Article  CAS  Google Scholar 

  20. Khamis SM, Johnson RR, Luo Z, Charlie Johnson AT (2010) Homo-DNA functionalized carbon nanotube chemical sensors. J Phys Chem Solids 71:476

    Article  CAS  Google Scholar 

  21. Ahmadi A, Kamfiroozi M, Beheshtian J, Hadipour NL (2011) The effect of surface curvature of aluminum nitride nanotubes on the adsorption of NH3. Struct Chem 22:1261

    Article  CAS  Google Scholar 

  22. Wang R, Zhang D, Sun W, Han Z, Liu C (2007) A novel aluminum-doped carbon nanotubes sensor for carbon monoxide. J. Mol. Struct 806:93

    Article  CAS  Google Scholar 

  23. Ahmadi A, Beheshtian J, Hadipour NL (2011) Chemisorption of NH3 at the open ends of boron nitride nanotubes: a DFT study. Struct Chem 22:183–188

    Article  CAS  Google Scholar 

  24. Beheshtian J, Peyghan AA, Bagheri Z (2012) Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens Actuators B 171–172:846

    Article  Google Scholar 

  25. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  26. Peyghan AA, Noei M, Yourdkhani S (2013) Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study. Superlattices Microstruct 59:115

    Article  CAS  Google Scholar 

  27. Tabtimsai C, Ruangpornvisuti V, Wanno B (2013) Density functional theory investigation of the VIIIB transition metal atoms deposited on (5,5) single-walled carbon nanotubes. Physica E 49:61

    Article  CAS  Google Scholar 

  28. Baei MT, Peyghan AA, Bagheri Z (2012) Fluorination of the exterior surface of AlN nanotube: a DFT study. Superlattices Microstruct 53:9

    Article  Google Scholar 

  29. Gan LH, Zhao JQ (2009) Theoretical investigation of [5, 5], [9, 0] and [10, 10] closed SWCNTs. Physica E 41:1249

    Article  CAS  Google Scholar 

  30. O’Boyle N, Tenderholt A, Langner K (2008) cclib: A library for package-independent computational chemistry algorithms. J Comput Chem 29:839

    Article  Google Scholar 

  31. Ma LC, Zhao HS, Yan WJ (2013) Structural, electronic and magnetic properties of linear monoatomic chains adsorption on beryllium oxidenanotube: first-principle study. J. Magnetism Magnetic Mater 330:174

    Article  CAS  Google Scholar 

  32. Politzer P, Kammeyer CW, Bauer J, Hedges WL (1981) Polar properties of carbon monoxide. J Phys Chem 85:4057

    Article  CAS  Google Scholar 

  33. Azizi K, Hashemianzadeh SM, Bahramifar S (2011) Density functional theory study of carbon monoxide adsorption on the inside and outside of the armchair single-walled carbon nanotubes. Curr Appl Phys 11:776

    Article  Google Scholar 

  34. Li S (2006) Semiconductor Physical Electronics, 2nd edn. Springer, USA

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ahmadi Peyghan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadizadeh, M., Rastegar, S.F. & Peyghan, A.A. The electronic response of nano-sized tube of BeO to CO molecule: a density functional study. Struct Chem 26, 809–814 (2015). https://doi.org/10.1007/s11224-014-0548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0548-6

Keywords

Navigation