Skip to main content
Log in

DFT-based quantitative structure–activity relationship studies for antioxidant peptides

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Peptides derived from food sources exhibit many different biological properties, including antioxidant activities. Some antioxidant activities are attributed to the scavenging of free radicals through electron transfer. In this study, the quantum chemical parameters associated with electron transfer were investigated. All calculations were performed using the Gaussian 03 W software package using DFT theory (B3LYP hybrid functions), together with the 6-311 + G (d, p) basis set that supported the experimental free radical (·OH and O2 ·) scavenging activities. The results of the scavenging O2 · model (R 2 = 0.882, Q 2 = 0.824) demonstrated that O2 · model has a high statistical significance and remarkable predictive ability; however, ·OH model was not prominent. We used the multiple linear regression to build the model and used the leave-one-out method to verify the regression’s prediction. The results showed that EHOMO and L, related to electron donating ability, are the most important parameters for understanding the free radical especially O2 · scavenging ability of antioxidant peptides. The information obtained from this study could provide clues for the guided synthesis of antioxidant peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MS, Shankar SK (2012) Neurochem Res 37:358–369

    Article  CAS  Google Scholar 

  2. Venkateshappa C, Harish G, Mahadevan A, Bharath MS, Shankar SK (2012) Neurochem Res 37:1601–1614

    Article  CAS  Google Scholar 

  3. Li Y, Kong D, Ahmad A, Bao B, Sarkar FH (2013) Antioxid Redox Sign 19:139–150

    Article  Google Scholar 

  4. Contreras MM, Hernández-Ledesma B, Amigo L, Martín-Álvarez PJ, Recio I (2011) LWT-Food Sci Technol 44:9–15

    Article  CAS  Google Scholar 

  5. Gómez-Ruiz JÁ, López-Expósito I, Pihlanto A, Ramos M (2008) Eur Food Res Technol 227:1061–1067

    Article  Google Scholar 

  6. Beermann C, Euler M, Herzberg J, Stahl B (2009) Eur Food Res Technol 229(4):637–644

    Article  CAS  Google Scholar 

  7. Padrón-García JA, Alonso-Tarajano M, Alonso-Becerra E (2009) Proteins 75:859–869

    Article  Google Scholar 

  8. Du QS, Huang RB, Chou KC (2008) Curr Protein Pept Sci 9:248–259

    Article  CAS  Google Scholar 

  9. Tong J, Liu S, Zhou P, Wu B, Li Z (2008) J Theor Biol 253:90–97

    Article  CAS  Google Scholar 

  10. Zhou P, Chen X, Wu Y, Shang Z (2010) Amino Acids 38:199–212

    Article  CAS  Google Scholar 

  11. Amic D, Davidovic-Amic D, Beslo D, Rastija V, Lucic B, Trinajstic N (2007) Curr Med Chem 14(7):827–845

    Article  CAS  Google Scholar 

  12. Rasulev BF, Abdullaev ND, Syrov VN, Leszczynski J (2005) QSAR Comb Sci 24(9):1056–1065

    Article  CAS  Google Scholar 

  13. Lien EJ, Ren S, Bui HH, Wang R (1999) Free Radical Bio Med 26(3):285–294

    Article  CAS  Google Scholar 

  14. van Acker SABE, de Groot MJ, van den Berg DJ, Tromp MN, Donné-Op den Kelder G, van der Vijgh WJ, Bast A (1996) Chem Res Toxicol 9(8):1305–1312

    Article  Google Scholar 

  15. Prouillac C, Vicendo P, Garrigues JC, Poteau R, Rima G (2009) Free Radic Bio Med 46(8):1139–1148

    Article  CAS  Google Scholar 

  16. Supratim Ray, Kakali De, Chandana Sengupta, Kunal Roy (2008) Indian J Biochem Bio 45(3):198

    Google Scholar 

  17. Pasha FA, Cho SJ, Beg Y, Tripathi YB (2007) Med Chem Res 16(7–9):408–417

    Article  CAS  Google Scholar 

  18. Ribeiro T, Motta A, Marcus P, Gaigeot MP, Lopez X, Costa D (2013) J Inorg Biochem 128:164–173

    Article  CAS  Google Scholar 

  19. Najafi M, Nazarparvar E, Mood KH, Zahedi M, Klein E (2011) Comput Theor Chem 965(1):114–122

    Article  CAS  Google Scholar 

  20. Sablon N, De Proft F, Geerlings P (2010) Chem Phys Lett 498(1):192–197

    Article  CAS  Google Scholar 

  21. Xie HJ, Lei QF, Fang WJ (2012) Sci China Chem 55(9):1832–1841

    Article  CAS  Google Scholar 

  22. Guo HY (2009) Preparation of antioxidant peptide from wheat germ protein by enzymatic hydrolysis. Jiangsu University, Zhenjiang

    Google Scholar 

  23. Hu L, Song R, Gu Z (2012) Afr J Biotechnol 11:3640–3648

    CAS  Google Scholar 

  24. Suetsuna K, Chen JR (2002) Food Sci Technol Res 8:227–230

    Article  CAS  Google Scholar 

  25. Zhang T, Li Y, Miao M, Jiang B (2011) Food Chem 128(1):28–33

    Article  CAS  Google Scholar 

  26. Chen HM, Muramoto K, Yamauchi F (1995) J Agri Food Chem 43:574–578

    Article  CAS  Google Scholar 

  27. Wen Y, Yaping Z (2001) J Am Oil Chem Soc 78:697–701

    Article  Google Scholar 

  28. Hypercube, Inc. Release H. 8.0 for windows, molecular modeling system, Hypercube[J]. Inc. http://www.hyper.com, 2002

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2004) Gaussian 03, revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  30. Rimola A, Aschi M, Orlando R, Ugliengo P (2012) J Am Chem Soc 134:10899–10910

    Article  CAS  Google Scholar 

  31. Topliss JG, Costello RJ (1972) J Med Chem 15:1066–1068

    Article  CAS  Google Scholar 

  32. SPSS Base 17.0 Applications Guide (2009) SPSS Inc, Chicago IL

  33. Valko M, Morris H, Cronin M (2005) Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  34. Sharma OP, Bhat TK (2009) Food Chem 113:1202–1205

    Article  CAS  Google Scholar 

  35. Kovacic P, Pozos RS, Somanathan R, Shangari N (2005) Curr Med Chem 12:2601–2623

    Article  CAS  Google Scholar 

  36. Valko M, Leibfritz D, Moncol J, Cronin MTD (2007) Int J Biochem Cell Bio 39:44–84

    Article  CAS  Google Scholar 

  37. Alparone A (2013) Chem Phy Lett 563:88–92

    Article  CAS  Google Scholar 

  38. Mladenović M, Mihailović M, Bogojević D (2011) Inter J Mol Sci 12:2822–2841

    Article  Google Scholar 

  39. Benayahoum A, Amira-Guebailia H, Houache O (2013) J Mol Model 19:2285–2298

    Article  CAS  Google Scholar 

  40. Pop R, Ştefănut MN (2012) Cent Eur J Chem 10:180–186

    Article  CAS  Google Scholar 

  41. Yamagami C, Akamatsu M, Motohashi N (2005) Bioorg Med Chem Lett 15:2845–2850

    Article  CAS  Google Scholar 

  42. Barzegar A, Davari M, Chaparzadeh N (2011) J Iran Chem Soc 8:973–982

    Article  CAS  Google Scholar 

  43. Zhao PL, Li J, Yang GF (2007) Bioorg Med Chem 15:1888–1895

    Article  CAS  Google Scholar 

  44. Nantasenamat C, Isarankura-Na-Ayudhy C, Naenna T, Prachayasittikul V (2008) J Mol Graph Model 27(2):188–196

    Article  CAS  Google Scholar 

  45. Li YW, Li B, He J, Qian P (2011) J Mol Struct 998(1):53–61

    Article  CAS  Google Scholar 

  46. Zhu L, Chen J, Tang X, Xiong YL (2008) J Agr Food Chem 56(8):2714–2721

    Article  CAS  Google Scholar 

  47. Jurva U, Wikström HV, Bruins AP (2002) Rapid Commun Mass Sp 16(20):1934–1940

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (31171672, 31071523), the Key Programs from MOST (2012BAD34B02, 2011BAK10B05, 2012BAD29B05), Public Program from the General Administration of Quality Supervision (201310128),and Grants from the Ministry of Health Foundation of China (W201304), and Hunan Provincial Innovation Foundation for Postgraduate (CX2014B387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhui Cheng.

Additional information

Yunhui Cheng and Fang Luo authors contributed to this paper equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Luo, F., Zeng, Z. et al. DFT-based quantitative structure–activity relationship studies for antioxidant peptides. Struct Chem 26, 739–747 (2015). https://doi.org/10.1007/s11224-014-0533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0533-0

Keywords

Navigation