Skip to main content
Log in

Metal ion binding of s-block cations and nanotubular cyclic (proline)4: A theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The binding interaction of alkali metal ions within the cavity of nanotubular cyclic (proline)4 [Cyclo(Pro)4] has been studied using quantum chemical density functional theory. The Cyclo(Pro)4 and its alkali metal ionic complexes were optimized at B3LYP/6-31+G(d) and CAM-B3LYP/6-31+G(d) levels of theory. For each alkali metal ion, two binding modes of complexation with Cyclo(Pro)4 were considered: tetradentate series of (a) and bidentate series of (b). The binding energies and various thermodynamic parameters of free Cyclo(Pro)4 and its alkali metal ion complexes were determined. In series of (a), the binding energy of Cyclo(Pro)4 toward metal ions increases as Li+ > K+ > Na+ > Rb+. In series of (b), the binding energy order is obtained as Li+ > Na+ > K+ > Rb+ > Cs+. The optimized structures are used to perform natural bond orbital analysis. The results indicate that the electron-donating oxygen offers lone pair electrons to the LP* orbitals of metal cations except in the tetradentate Li+ and Na+ complexes, where the electron-donating nitrogen offers lone pair electrons to the LP* orbitals of metal cations. The strength and nature of interactions between alkali metal ions and macrocyclic Cyclo(Pro)4 was studied using topological parameters at bond critical points (BCP) by AIM analysis. Consequently, these interactions were closed-shell interactions due to their positive ∇2 ρ(r) values at corresponding BCP. The bulk solution effect on the binding interaction between alkali metal ions and Cyclo(Pro)4 was evaluated using PCM-SCRF optimization calculations at the same level of theory. The obtained optimized geometries and binding energies of gas and solution phases were compared. In addition, the bulk solution effect reduced the binding energies of Cyclo(Pro)4···M+ complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mikami K, Lautens M (eds) (2007) New frontiers in asymmetric catalysis. Wiley, Hoboken

    Google Scholar 

  2. Pichierri F (2013) Dalton Trans 42:6083–6091

    Article  CAS  Google Scholar 

  3. Blakemore DJ, Chitta R, D’Souza F (2007) Tetrahedron Lett 48:1977–1982

    Article  CAS  Google Scholar 

  4. Ali Sk M, Maity DK, De S, Shenoi MRK (2008) Desalination 232:181–190

    Article  CAS  Google Scholar 

  5. Lindoya LF, Meehan GV, Vasilescu IM, Kimc HJ, Lee J-E, Lee SS (2010) Coord Chem Rev 254:1713–1725

    Article  CAS  Google Scholar 

  6. Iki N, Miyano S (2001) J Incl Phenom Macrocycl Chem 41:99–105

    Article  CAS  Google Scholar 

  7. Marohashi N, Narumi F, Iki N, Hattori T, Miyano S (2006) Chem Rev 106:5291–5316

    Article  CAS  Google Scholar 

  8. Casanovas J, Rodríguez-Ropero F, Zanuy D, Alemán C (2010) Polymer 51:4267–4272

    Article  CAS  Google Scholar 

  9. Thompson MA, Glendening ED, Feller D (1994) J Phys Chem 98:10465–10476

    Article  CAS  Google Scholar 

  10. Gooding JJ, Hibbert DB, Yang W (2001) Sensors 1:75–90

    Article  CAS  Google Scholar 

  11. Dudev T, Lim C (2014) Chem Rev 114:538–556

    Article  CAS  Google Scholar 

  12. Gooding JJ (2007) Peptide-modified electrodes for detecting metal ions. In: Alegret S, Merkoç A (eds) Comprehensive analytical chemistry, Chapter 10, vol 49. Elsevier, Amsterdam

    Google Scholar 

  13. Dunbara RC, Berdenb G, Oomens J (2013) Int J Mass Spectrom 356:354–355

    Google Scholar 

  14. Eyler JR (2009) Mass Spectrom Rev 28:448–467

    Article  CAS  Google Scholar 

  15. Talley JM, Cerda BA, Ohanessian G, Wesdemiotis C (2002) Chem Eur J 8:1377–1388

    Article  CAS  Google Scholar 

  16. Krzywoszynska K, Kozlowski H, Andaivel P (2014) Dalton Trans. doi:10.1039/C4DT01614A

    Google Scholar 

  17. Brasun J, Matera A, Ołdziej S, Swiatek-Kozłowska J, Messori L, Gabbiani C, Orfei M, Ginanneschi M (2007) J Inorg Biochem 101:452–460

    Article  CAS  Google Scholar 

  18. Hartgerink JD, Granja JR, Milligan RA, Ghadiri MR (1996) J Am Chem Soc 118:43–50

    Article  CAS  Google Scholar 

  19. Izzo I, Ianniello G, Cola CD, Nardone B, Erra L, Vaughan G, Tedesco C, Riccardis FD (2013) Org Lett 15:598–601

    Article  CAS  Google Scholar 

  20. Williams SM, Brodbelt JS (2004) J Am Soc Mass Spectrom 15:1039–1054

    Article  CAS  Google Scholar 

  21. Chakraborty TK (1996) Pure Appl Chem 68:565–578

    Article  CAS  Google Scholar 

  22. Sarma AVS, Ramana Rao MHV, Sarma JARP, Nagaraj R, Dutta AS, Kunwar AC (2002) J Biochem Biophys Methods 51:27–45

    Article  CAS  Google Scholar 

  23. Cheng L, Naumann TA, Horswill AR, Hong S-J, Venters BJ, Tomsho JW, Benkovic SJ, Keiler KC (2007) Protein Sci 16:1535–1542

    Article  CAS  Google Scholar 

  24. McMurray JS, Lewis CA (1993) Tetrahedron Lett 34:8059–8062

    Article  CAS  Google Scholar 

  25. Madison V, Deber CM, Blout ER (1997) J Am Chem Soc 99:4788–4798

    Article  Google Scholar 

  26. Prakash J, de Jong E, Post E, Gouw ASH, Beljaars L, Poelstra K (2010) J Control Release 145:91–101

    Article  CAS  Google Scholar 

  27. Hioki H, Kinami H, Yoshida A, Kojima A, Kodama M, Takaoka S, Ueda K, Katsu T (2004) Tetrahedron Lett 45:1091–1094

    Article  CAS  Google Scholar 

  28. Kubik S, Goddard R (2001) Eur J Org Chem 311-322

  29. Kubik S, Goddard R (1999) J Org Chem 64:9475–9486

    Article  CAS  Google Scholar 

  30. Praveena G, Kolandaivel P (2010) IEEE Trans Nanobiosci 9:100–110

    Article  Google Scholar 

  31. Ruotolo BT, Tate CC, Russell DH (2004) J Am Soc Mass Spectrom 15:870–878

    Article  CAS  Google Scholar 

  32. Kaltashov IA, Cotter RJ, Feinstone WH, Ketner GW, Woods AS (1997) J Am Soc Mass Spectrom 8:1070–1077

    Article  CAS  Google Scholar 

  33. Benedetti E, Bavoso A, Di blasio B, Pavone V, Pedone C, Rossi F (1986) Inorg Chim Acta 116:31–35

    Article  CAS  Google Scholar 

  34. Kubik S (1999) J Am Chem Soc 121:5846–5855

    Article  CAS  Google Scholar 

  35. Ross ARS, Luettgen SL (2005) J Am Soc Mass Spectrom 16:1536–1544

    Article  CAS  Google Scholar 

  36. Chermahini AN, Rezapour M, Teimouri A (2014) J Incl Phenom Macrocycl Chem 79:205–214

    Article  CAS  Google Scholar 

  37. Afonso C, Tabet J-C, Giorgi G, Tureček F (2012) J Mass Spectrom 47:208–220

    Article  CAS  Google Scholar 

  38. Ma Z, Cowart DM, Scott RA, Giedroc DP (2009) Biochem 48:3325–3334

    Article  CAS  Google Scholar 

  39. Chen JJ, Teesch LM, Spatola AF (1996) Lett Pept Sci 3:17–24

    Article  CAS  Google Scholar 

  40. Makrlık E, Toman P, Vanura P (2013) J Radioanal Nucl Chem 295:615–619

    Article  CAS  Google Scholar 

  41. Frisch MJT, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross HB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A. 02. Gaussian Inc, Wallingford, pp 270–271

    Google Scholar 

  42. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  43. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  44. Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117:6010–6015

    Article  CAS  Google Scholar 

  45. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  46. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873–1885

    Article  Google Scholar 

  47. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  48. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  49. Barone V, Cossi M (1998) J Tomasi J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  50. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  51. Bader RFW (1990) Atoms in molecules, a quantum theory, international series of monographs in chemistry, vol 22. Oxford University Press, Oxford

    Google Scholar 

  52. Zoubi WA (2013) J Coord Chem 66:2264–2289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial supports from the Isfahan University of Technology for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Najafi Chermahini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari Chermahini, Z., Najafi Chermahini, A., Dabbagh, H.A. et al. Metal ion binding of s-block cations and nanotubular cyclic (proline)4: A theoretical study. Struct Chem 26, 675–684 (2015). https://doi.org/10.1007/s11224-014-0525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0525-0

Keywords

Navigation