Skip to main content
Log in

Theoretical studies on the mechanisms and rate constants for the hydroxylation of n-butyl, iso-butyl and tert-butyl vinyl ethers in atmosphere

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The reaction mechanisms for the atmospheric hydroxylation of n-butyl vinyl ether (n-BVE), iso-butyl vinyl ether (i-BVE), and tert-butyl vinyl ether (t-BVE) were investigated by using quantum chemical method in this paper. The geometry optimizations and frequency calculations were carried out at the MPWB1K/6-31+G(d,p) level, and the accurate energetic parameters were obtained by the MPWB1K/6-311++g(3df,2p) method. The reaction mechanisms for the title reactions have been presented. Ten possible reaction channels were discussed for the primary hydroxylation of n-BVE and t-BVE, while fourteen pathways for i-BVE. Three favorable reaction pathways were chosen for each isomer to undergo further investigation. Major products are n-butyl formate, iso-butyl formate, tert-butyl formate, and HCHO. The rate constants of the primary reactions were calculated over the temperature range of 200–400 K and the pressure range of 100–2,000 Torr by employing MESMER program. At 298 K and 760 Torr, the whole rate constants of n-BVE + OH, i-BVE + OH, and t-BVE + OH are 12.3 × 10−11, 9.32 × 10−11 and 5.75 × 10−11 cmmolecule−1 s−1, respectively. Additionally, the lifetimes of the three isomers with respect to OH radical are \(\tau\) (n-BVE) = 1.13 h, \(\tau\) (i-BVE) = 1.49 h, and \(\tau\) (t-BVE) = 2.41 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638

    Article  CAS  Google Scholar 

  2. Guenther A, Geron C, Pierce T, Lamb B, Harley P, Fall R (2000) Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos Environ 34:2205–2230

    Article  CAS  Google Scholar 

  3. Placet M, Mann CO, Gilbert RO, Niefer MJ (2000) Emissions of ozone precursors from stationary sources: a critical review. Atmos Environ 34:2183–2204

    Article  CAS  Google Scholar 

  4. Singh H, Chen Y, Staudt A, Jacob D, Blake D, Heikes B, Snow J (2001) Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds. Nature 410:1078–1081

    Article  CAS  Google Scholar 

  5. Arey J, Winer AM, Atkinson R, Aschmann SM, Long WD, Morrison CL (1991) The emission of (Z)-3-hexen-1-ol, (Z)-3-hexenylacetate and other oxygenated hydrocarbons from agricultural plant species. Atmos Environ A Gen Topic 25:1063–1075

    Article  Google Scholar 

  6. Winer AM, Arey J, Atkinson R, Aschmann SM, Long WD, Morrison CL, Olszyk DM (1992) Emission rates of organics from vegetation in California’s Central Valley. Atmos Environ A Gen Topic 26:2647–2659

    Article  Google Scholar 

  7. König G, Brunda M, Puxbaum H, Hewitt CN, Duckham SC, Rudolph J (1995) Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species. Atmos Environ 29:861–874

    Article  Google Scholar 

  8. Goldan PD, Kuster WC, Fehsenfeld FC, Montzka SA (1995) Hydrocarbon measurements in the southeastern United States: the rural oxidants in the southern environment (ROSE) program 1990. J Geophys Res A 100:25945–25963

    Article  Google Scholar 

  9. Lide DR, Kehiaian HV (1994) CRC handbook of thermophysical and thermochemical data. CRC, Boca Raton

    Google Scholar 

  10. TRCVP, Vapor pressure database, Version 2.2P, Thermodynamic Research Center, Texas A&M University, College Station, TX

  11. Jang M, Kamens RM (1999) Newly characterized products and composition of secondary aerosols from the reaction of α-pinene with ozone. Atmos Environ 33:459–474

    Article  CAS  Google Scholar 

  12. Kalberer M, Yu J, Cocker DR, Flagan RC, Seinfeld JH (2000) Aerosol formation in the cyclohexene-ozone system. Environ Sci Technol 34:4894–4901

    Article  CAS  Google Scholar 

  13. Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44:7520–7540

    Article  Google Scholar 

  14. George C, Sidebottom H, Mellouki A, Herrmann H, Wortham H, Kirchner F, Carlier P (2005) Mutiphase chemistry of oxygenated species in the troposphere. MOST, final report EU contract EVK2-CT-2001-00114

  15. Mellouki A, le Bras G, Sidebottom H (2003) Kinetics and mechanisms of the oxidation of oxygenated organic compounds in the gas phase. Chem Rev 103:5077–5096

    Article  CAS  Google Scholar 

  16. Scarfogliero M, Picquet-Varrault B, Salce J, Durand-Jolibois R, Doussin JF (2006) Kinetic and mechanistic study of the gas-phase reactions of a series of vinyl ethers with the nitrate radical. J Phys Chem A 110:11074–11081

    Article  CAS  Google Scholar 

  17. Zhou S, Barnes I, Zhu T, Bejan I, Benter T (2006) Kinetic study of the gas-phase reactions of OH and NO3 radicals and O3 with selected vinyl ethers. J Phys Chem A 110:7386–7392

    Article  CAS  Google Scholar 

  18. Zhou S, Barnes I, Zhu T, Klotz B, Albu M, Bejan I, Benter T (2006) Product study of the OH, NO3 and O3 initiated atmospheric photooxidation of propyl vinyl ether. Environ Sci Technol 40:5415–5421

    Article  CAS  Google Scholar 

  19. Wang L, Ge M, Wang W (2009) Kinetic study of the reactions of chlorine atoms with ethyl vinyl ether and propyl vinyl ether. Chem Phys Lett 473:30–33

    Article  CAS  Google Scholar 

  20. Zhou S, Barnes I, Zhu T, Benter T (2009) Rate coefficients for the gas-phase reactions of OH and NO3 radicals and O3 with ethyleneglycol monovinyl ether, ethyleneglycol divinyl ether, and diethyleneglycol divinyl ether. J Phys Chem A 113:858–865

    Article  CAS  Google Scholar 

  21. Peirone SA, Aranguren Abrate JP, Taccone RA, Cometto PM, Lane SI (2011) Kinetic study of the OH-initiated photo-oxidation of four unsaturated (allyl and vinyl) ethers under simulated atmospheric conditions. Atmos Environ 45:5325–5331

    Article  CAS  Google Scholar 

  22. Zhou S, Barnes I, Zhu T, Benter T (2012) Kinetic study of gas-phase reactions of OH and NO3 radicals and O3 with iso-butyl and tert-butyl vinyl ethers. J Phys Chem A 116:8885–8892

    Article  CAS  Google Scholar 

  23. He MX, Wang H, Sun XY, Zhang QZ, Wang WX (2009) Theoretical study of OH-initiated atmospheric oxidation for propyl vinyl ether. J Theor Comput Chem 8:261–277

    Article  CAS  Google Scholar 

  24. Han DD, Cao HJ, Sun YH, Sun RL, He MX (2012) Mechanistic and kinetic study on the ozonolysis of n-butyl vinyl ether, i-butyl vinyl ether and t-butyl vinyl ether. Chemosphere 88:1235–1240

    Article  CAS  Google Scholar 

  25. Han DD, Cao HJ, Sun YH, He MX (2012) Mechanistic and kinetic study on the ozonolysis of ethyl vinyl ether and propyl vinyl ether. Struct Chem 23:499–514

    Article  CAS  Google Scholar 

  26. Güsten H, Medven Ž, Sekušak S, Sabljić A (1995) Predicting tropospheric degradation of chemicals: from estimation to computation. SAR QSAR Environ Res 4:197–209

    Article  Google Scholar 

  27. Sabljić A, Peijnenburg W (2001) Modeling lifetime and degradability of organic compounds in air, soil, and water systems (IUPAC technical report). Pure Appl Chem 73:1331–1348

    Google Scholar 

  28. Logan JA, Prather MJ, Wofsy SC, McElroy MB (1981) Tropospheric chemistry: a global perspective. J Geophys Res Ocean 86:7210–7254

    Article  CAS  Google Scholar 

  29. Atkinson R, Lloyd AC (1984) Evaluation of kinetic and mechanistic data for modeling of photochemical smog. J Phys Chem Ref Data 13:315–444

    Article  CAS  Google Scholar 

  30. Perry RA, Atkinson R, Pitts JN Jr (1977) Rate constants for the reaction of OH radicals with dimethyl ether and vinyl methyl ether over the temperature range 299–427 K. J Chem Phys 67:611–614

    Article  CAS  Google Scholar 

  31. Thiault G, Thévenet R, Mellouki A, le Bras G (2002) OH and O3-initiated oxidation of ethyl vinyl ether. Phys Chem Chem Phys 4:613–619

    Article  CAS  Google Scholar 

  32. Thiault G, Mellouki A (2006) Rate constants for the reaction of OH radicals with n-propyl, n-butyl, iso-butyl and tert-butyl vinyl ethers. Atmos Environ 40:5566–5573

    Article  CAS  Google Scholar 

  33. Sun XY, He MX, Zhang QZ, Wang WX, Jalbout AF (2008) Quantum chemical study on the atmospheric photooxidation of methyl vinyl ether (MVE). J Mol Struc-THEOCHEM 868:87–93

    Article  CAS  Google Scholar 

  34. Han DD, Cao HJ, Li J, Li MY, He MX, Hu JT (2014) Computational study on the mechanisms and rate constants of the OH-initiated oxidation of ethyl vinyl ether in atmosphere. Chemosphere 111:61–69

    Article  CAS  Google Scholar 

  35. He MX, Wang H, Sun XY, Zhang QZ, Wang WX (2009) Theoretical study of OH-initiated atmospheric oxidation for propyl vinyl ether. J Theor Comput Chem 8:261–277

    Article  CAS  Google Scholar 

  36. Martell JM, Boyd RJ (1995) Ab initio studies of reactions of hydroxyl radicals with fluorinated ethanes. J Phys Chem 99:13402–13411

    Article  CAS  Google Scholar 

  37. Sekušak S, Güsten H, Sabljić A (1995) An ab initio investigation on transition states and reactivity of chloroethane with OH radical. J Chem Phys 102:7504–7518

    Article  Google Scholar 

  38. Sekušak S, Güsten H, Sabljić A (1996) An ab initio study on reactivity of fluoroethane with hydroxyl radical: application of G2 theory. J Phys Chem 100:6212–6224

    Article  Google Scholar 

  39. Suh I, Zhang R, Molina LT, Molina MJ (2003) Oxidation mechanism of aromatic peroxy and bicyclic radicals from OH-toluene reactions. JACS 125:12655–12665

    Article  CAS  Google Scholar 

  40. Zhang QZ, Qu XH, Wang H, Xu F, Shi XY, Wang WX (2009) Mechanism and thermal rate constants for the complete series reactions of chlorophenols with H. Environ Sci Technol 43:4105–4112

    Article  CAS  Google Scholar 

  41. Gao R, Xu F, Li SQ, Hu JT, Zhang QZ, Wang WX (2013) Formation of bromophenoxy radicals from complete series reactions of bromophenols with H and OH radicals. Chemosphere 92:382–390

    Article  CAS  Google Scholar 

  42. Zhang QZ, Yu WN, Zhang RX, Zhou Q, Gao R, Wang WX (2010) Quantum chemical and kinetic study on dioxin formation from the 2,4-TCP and 2,4-DCP precursors. Environ Sci Technol 44:3395–3403

    Article  CAS  Google Scholar 

  43. Zhou Q, Shi X, Xu F, Zhang Q, He M, Wang W (2009) Mechanism of OH-initiated atmospheric photooxidation of the organophosphorus insecticide (C2H5O)3PS. Atmos Environ 43:4163–4170

    Article  CAS  Google Scholar 

  44. Al Mulla IAS (2006) Kinetic and mechanisms for the atmospheric degradation of unsaturated oxygen containing compounds. Ph.D. dissertation, The National University of Ireland

  45. Frisch MJ, Trucks GW, Schlegel HB, Gill PWM, Johnson BG, Robb MA, Cheeseman JR, Keith TA, Petersson GA, Montgomery JA, Raghavachari K, Allaham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzales C, Pople JA (2003) Gaussian 03. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  46. Zhao Y, Truhlar DG (2004) Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  47. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  48. Robertson SH, Glowacki DR, Liang CH, Morley C, Pilling MJ (2008) MESMER (master equation solver for multi-energy well reactions), an object oriented C++ program for carrying out ME calculations and eigenvalue–eigenvector analysis on arbitrary multiple well systems. http://sourceforge.net/projects/mesmer

  49. Gannon KL, Blitz MA, Liang CH, Pilling MJ, Seakins PW, Glowacki DR (2010) Temperature dependent kinetics (195–798 K) and H atom yields (298–498 K) from reactions of 1CH2 with acetylene, ethene, and propene. J Phys Chem A 114:9413–9424

    Article  CAS  Google Scholar 

  50. Gannon KL, Blitz MA, Liang CH, Pilling MJ, Seakins PW, Glowacki DR, Harvey JN (2010) An experimental and theoretical investigation of the competition between chemical reaction and relaxation for the reactions of 1CH2 with acetylene and ethene: implications for the chemistry of the giant planets. Faraday Discuss 147:173–188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (21477065, 21337001, 20877049 and 21103147) and the Fundamental Research Funds of Shandong University (2014JC014). We thank Dr. Struan H. Robertson for providing the MESMER program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoxia He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Cao, H., Li, J. et al. Theoretical studies on the mechanisms and rate constants for the hydroxylation of n-butyl, iso-butyl and tert-butyl vinyl ethers in atmosphere. Struct Chem 26, 713–729 (2015). https://doi.org/10.1007/s11224-014-0517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0517-0

Keywords

Navigation