Skip to main content

Advertisement

Log in

Validation of the reaction thermodynamics paths associated with LiK(BH4)2 by detection of metastable reaction paths from first-principles calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

LiK(BH4)2, with a 10.65 wt% H2 capacity, is a promising hydrogen storage candidate material. We describe all the possible metastable paths for three reactant mixtures associated with LiK(BH4)2, using first-principles thermodynamic calculations. However, with the first-principles calculations inherent disadvantage is absent from the vibrational entropy contribution to the prediction of the reaction mechanism, which indicates that the reaction mechanism of the reaction path prediction may not be the most stable. The study focuses on examining the possible metastable paths for the three reactants, using first-principles calculations. The objective of this study is to find the minimum free energy path among all the possible paths of the three reactants mixture. A clear conclusion is that the minimum free energy path predicted from first principles thermodynamic calculations is the most stable reaction paths at an appropriate H2 pressure range for all cases. An additional aim of paper is to assess whether the predicted mechanisms can be unambiguously described under the DFT uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Menedéz E, Garroni S, Lόpez-Ortega A, Estrader M, Liedke MO, Fassbender J, Solsona P, Surinach S, Baro MD, Nogués J (2010) J Phys Chem C 114:16818–16822

    Article  Google Scholar 

  2. Schlapbach L, Züttel A (2001) Nature 414:353–358

    Article  CAS  Google Scholar 

  3. Eberle U, Felderhoff M, Schuth F (2009) Angew Chem Int Ed 48:6608–6630

    Article  CAS  Google Scholar 

  4. Grochala W, Edwards PP (2004) Chem Rev 104:1823

    Article  Google Scholar 

  5. Soloveichik G, Her J-H, Stephens PW, Gao Y, Rijssenbeek J, Andrus M, Zhao JC (2008) Inorg Chem 47:4290–4298

    Article  CAS  Google Scholar 

  6. Vajo JJ, Skeith SL, Mertens F (2005) J Phys Chem B 109:3719–3722

    Article  CAS  Google Scholar 

  7. Vittetoe AW, Niemann MU, Srinivasan SS, McGrath K, Kumar A, Goswami DY, Stefanakos EK, Thomas S (2009) Int J Hydrogen Energy 34:2333–2339

    Article  CAS  Google Scholar 

  8. Akbarzadeh AR, Ozolins V, Wolverton C (2007) Adv Mater 19:3233–3239

    Article  CAS  Google Scholar 

  9. Nichkel EA, Jones NO, David WIF, Johnson SR, Lowton RL, Sommariva M, Edwards PP (2008) Angew Chem Int Ed 47:2817–2819

    Article  Google Scholar 

  10. Xiao XB, Yu WY, Tang BY (2008) J Phys 20:445210–445216

    Google Scholar 

  11. Kim KC, Sholl DS (2010) J Phys Chem C 114:678–686

    Article  CAS  Google Scholar 

  12. Kim KC, Kulkarni AD, Johnson JK, Sholl DS (2011) Phys Chem Chem Phys 13:21520–21529

    Article  CAS  Google Scholar 

  13. Kim KC (2012) J Chem Phys 137:08412–084111

    Google Scholar 

  14. Baroni S, Gironcoli SD, Corso AD, Giannozzi P (2001) Rev Mod Phys 73:515–562

    Article  CAS  Google Scholar 

  15. Refson K, Clark S, Tulip P (2006) Phys Rev B 73:195109–195115

    Article  Google Scholar 

  16. Johnson JW, Brody JF (1982) J Electrochem Soc 129:2213–2219

    Article  CAS  Google Scholar 

  17. Miwa K, Ohba N (2005) Towata S-i. Phys Rev B 71:195109–195115

    Article  Google Scholar 

  18. Garroni S, Milanese C, Pottmaier D, Mulas G, Nolis P, Girella A, Caputo R, Olid D, Teixdor F, Baricco M, Marini A, Surinach S, Baro MD (2011) J Phys Chem C 115:16664–16671

    Article  CAS  Google Scholar 

  19. Kresse G (1995) Furthmuller. J Comput Mater Sci 5:15–50

    Google Scholar 

  20. Caputo R, Garroni S, Olid D, Teixidor F, Surinach S, Baro MD (2010) Phys Chem Chem Phys 12:15093–15100

    Article  CAS  Google Scholar 

  21. Alapati SV, Johnson JK, Sholl DS (2007) Phys Chem Chem Phys 9:1438–1452

    Article  CAS  Google Scholar 

  22. Alapati SV, Johnson JK, Sholl DS (2007) J. Alloys Compd. 446–447:23–27

    Article  Google Scholar 

  23. Alapati SV, Johnson JK, Sholl DS (2007) J Phys Chem C 111:1584–1591

    Article  CAS  Google Scholar 

  24. Alapati SV, Johnson JK, Sholl DS (2008) J Phys Chem C 12:5258–5262

    Article  Google Scholar 

  25. Alapati SV, Johnson JK, Sholl DS (2006) J. Phys. Chem. B 110:8769–8776

    Article  CAS  Google Scholar 

  26. Ibikunle A, Goudy AJ, Yang H (2009) J Alloys Compd 475:110–115

    Article  CAS  Google Scholar 

  27. Guo YJ, Jia JF, Wang XH, Ren Y, Wu HS (2013) Chem Phys 418:22–27

    Article  CAS  Google Scholar 

  28. Ozolins V, Majzoub EH, Wolverton C (2009) J Am Chem Soc 131:230–237

    Article  CAS  Google Scholar 

  29. Ozolins V, Majzoub EH, Wolverton C (2008) Phys Rev Lett 100:135501–135505

    Article  CAS  Google Scholar 

  30. Kulkarni AD, Wang LL, Johnson DD, Sholl DS, Johnson JK (2010) J Phys Chem C 114:14601–14605

    Article  CAS  Google Scholar 

  31. Kim KC, Allendorf MD, Stavila V, Sholl DS (2010) Phys Chem Chem Phys 12:9918–9926

    Article  CAS  Google Scholar 

  32. Zavorotynska O, Corno M, Damin A, Spoto G, Ugliengo P, Baricco M (2011) J Phys Chem C 15:18890–18900

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (No. 21031003 and 21103101), and Key Project of Chinese Ministry of Education (No. 212022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Shun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, YJ., Jia, JF. & Wu, HS. Validation of the reaction thermodynamics paths associated with LiK(BH4)2 by detection of metastable reaction paths from first-principles calculations. Struct Chem 26, 647–653 (2015). https://doi.org/10.1007/s11224-014-0516-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0516-1

Keywords

Navigation