Skip to main content
Log in

New columnar liquid crystal materials based on luminescent 2-methoxy-3-cyanopyridines

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A new series of donor–acceptor–donor (D–A–D) type luminescent mesogens carrying 2-methoxy-3-cyanopyridine as a central core linked with variable alkoxy chain lengths (m = 6 and 8) as terminal substituents was synthesized and characterized using spectral methods. The newly synthesized molecules were subjected to single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), differential scanning calorimetric (DSC), polarizing optical microscopy (POM), and fluorescence emission studies in order to ascertain their mesogenic and photophysical properties. The SCXRD data on 4a and 4b reveal that the presence of short intermolecular contacts, viz. C–H···N, C–H···O, C–H···π, and π···π interactions, is responsible for their crystal packing. The measured torsion angle values indicate that molecules possess distorted non-planar structure. The DSC, POM, and PXRD studies confirm that all the molecules show thermotropic liquid crystalline behaviour and exhibit rectangular columnar phase. Further, their UV–visible and fluorescence spectral studies reveal that the target molecules are luminescent displaying a strong absorption band in the range of 335–340 nm and a blue fluorescence emission band in the range of 395–425 nm (both in solution and film state) with good fluorescence quantum yields (10–49 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. O’Neill M, Kelly SM (2011) Adv Mater 23:566–584

    Article  Google Scholar 

  2. Warman JM, Van de Craats AM (2003) Mol Cryst Liq Cryst 396:41–72

    Article  CAS  Google Scholar 

  3. Shklyarevskiy IO, Jonkheijm P, Stutzmann N, Wasserberg D, Wondergem HJ, Christianen PCM, Schenning A, de Leeuw DM, Tomovic Z, Wu JS, Mu¨llen K, Maan JC (2005) J Am Chem Soc 127:16233–16237

    Article  CAS  Google Scholar 

  4. Monobe H, Terasawa N, Kiyohara K, Shimizu Y, Azehara H, Nakasa A, Fujihira M (2004) Mol Cryst Liq Cryst 412:229–236

    Article  Google Scholar 

  5. Tracz A, Jeszka JK, Watson MD, Pisula W, Müllen K, Pakula T (2003) J Am Chem Soc 125:1682–1683

    Article  CAS  Google Scholar 

  6. Pisula W, Menon A, Stepputat M, Lieberwirth I, Kolb U, Tracz A, Sirringhaus H, Pakula T, Müllen K (2005) Adv Mater 17:684–689

    Article  CAS  Google Scholar 

  7. Piris J, Debije MG, Stutzmann N, Laursen BW, Pisula W, Watson MD, Bjornholm T, Müllen K, Warman JM (2004) Adv Func Mater 14:1053–1061

    Article  CAS  Google Scholar 

  8. Bunk O, Nielsen MM, Solling TI, Van de Craats AM, Stutzmann N (2003) J Am Chem Soc 125:2252–2258

    Article  CAS  Google Scholar 

  9. Vishnumurthy KA, Sunitha MS, Safakath K, Philip R, Adhikari AV (2011) Polymer 52:4174–4183

    Article  CAS  Google Scholar 

  10. Bagley MC, Lin Z, Pope SJA (2009) Chem Commun 5165–5167

  11. Matsui M, Oji A, Hiramatsu K, Shibata K, Muramatsu H (1992) J Chem Soc Perkin Trans 2:201–206

    Article  Google Scholar 

  12. Zhao X-L, Mak TCW (2004) Dalton Trans 3212–3217

  13. Ahipa TN, Kumar V, Adhikari AV (2013) Liq Cryst 40:31–38

    Article  CAS  Google Scholar 

  14. Gupta SK, Raghunathan VA, Lakshminarayanan V, Kumar S (2009) J Phys Chem B 113:12887–12895

    Article  CAS  Google Scholar 

  15. Zhao B, Liu B, Png RQ, Zhang K, Lim KA, Shao JJ, Ho PKH, Chi C, Wu J (2010) Chem Mater 22:435–449

    Article  CAS  Google Scholar 

  16. Gregg BA, Fox MA, Bard AJ (1989) J Am Chem Soc 111:3024–3029

    Article  CAS  Google Scholar 

  17. de la Escosura A, Martinez-Diaz MV, Barbera J, Torres T (2008) J Org Chem 73:1475–1480

    Article  Google Scholar 

  18. Kato T, Mizoshita N, Kishimoto K (2006) Angew Chem Int Ed 45:38–68

    Article  CAS  Google Scholar 

  19. Kato T, Mizoshita N, Kiane K (2001) Macromol Rapid Commun 22:797–814

    Article  CAS  Google Scholar 

  20. Giroud-Godquin AM, Maitlis PM (1991) Angew Chem Int Ed Engl 30:375–402

    Article  Google Scholar 

  21. Kato T, Yasuda T, Kamikawa Y, Yoshio M (2009) Chem Commun 729–739

  22. Barbera J, Rakitin OA, Ros MB, Torroba T (1998) Angew Chem Int Ed 37:296–299

    Article  CAS  Google Scholar 

  23. Foster EJ, Babuin J, Nguyen N, Williams VE (2004) Chem Commun 2052–2053

  24. Babuin J, Foster J, Williams VE (2003) Tetrahedron Lett 44:7003–7005

    Article  CAS  Google Scholar 

  25. Mohr B, Wegner G, Ohta K (1995) J Chem Soc Chem Commun 995–996

  26. Shen Y, Li C, Chang K, Chin S, Lin H, Liu Y, Hung C, Hsu H, Sun S (2009) Langmuir 25:8714–8722

    Article  CAS  Google Scholar 

  27. Sergeyev S, Pisula W, Geerts YH (2007) Chem Soc Rev 36:1902–1929

    Article  CAS  Google Scholar 

  28. Dikundwar AG, Dutta GK, Guru Row TN, Patil S (2011) Cryst Growth Des 11:1615–1622

    Article  CAS  Google Scholar 

  29. Allen FH, Bruno IJ (2010) Acta Crystallogr Sect B Struct Sci 66:380–386

    Article  CAS  Google Scholar 

  30. Demas JN, Crosby GA (1971) J Phys Chem 75:991–1024

    Article  Google Scholar 

  31. Kawamura Y, Sasabe H, Adachi C (2004) Jpn J Appl Phys Part 1(43):7729–7730

    Article  Google Scholar 

  32. Oxford Diffraction (2009) CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd., Yarnton

    Google Scholar 

  33. Oxford instruments, Cryojet XL/HT controller; Oxford Diffraction Ltd, Yarnton, England

  34. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  35. Farrugia LJ (1999) J Appl Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  36. Farrugia LJ (1997) J Appl Crystallogr 30:565–566

    Article  CAS  Google Scholar 

  37. Spek AL (2003) J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

  38. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, Van de Streek J (2006) J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  39. Dusek M, Petricek V, Wunschel M, Dinnebier RE, van Smaalen S (2001) J Appl Crystallogr 34:398–404

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the NITK, Surathkal, NMR research centre, Solid State Structural Chemistry Unit, IISc and Soft Condensed Matter Group, RRI, Bangalore, for necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Airody Vasudeva Adhikari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11224_2014_390_MOESM1_ESM.doc

Synthesis, structural Characterization, X-ray Crystallography and PXRD data. Crystallographic data for the structure reported in this article have been deposited with the Cambridge Crystallographic Data Center with the deposition numbers 916621 and 916818. Copy of the data can be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: +44-1223-336033; E-mail: deposit@ccdc.cam. ac.uk or www.ccdc.cam.ac.uk]. Supplementary material 1 (DOC 1212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahipa, T.N., Kumar, V. & Adhikari, A.V. New columnar liquid crystal materials based on luminescent 2-methoxy-3-cyanopyridines. Struct Chem 25, 1165–1174 (2014). https://doi.org/10.1007/s11224-014-0390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0390-x

Keywords

Navigation