Skip to main content
Log in

Modification of the electronic properties of zigzag (n = 5–10) and armchair (n = 3, 5) carbon nanotubes by K atom adsorption

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The adsorption of the potassium atom onto the surface of (n,0) zigzag nanotube (n = 5–10) and (n,n) armchair nanotubes (n = 3, 5) has been studied by density functional theory. The local density approximation calculation of adsorption energy (E ads) emphasized on the dependency of E ads to the diameter and chirality of the nanotube. E ads decreases when the diameter increases. So the (5,0)-K system has the highest adsorption energy among all structures. Furthermore, a significant change was observed in the electronic properties of potassium-adsorbed single-walled carbon nanotube (SWCNT) and the metallic behavior of the nanotube improved. Therefore, our results showed that such modified SWCNTs can be applied in nanodevices such as transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yotprayoonsak P, Hannula K, Lahtinen T, Ahlskog M, Johansson A (2011) Carbon 49:5283–5291

    Article  CAS  Google Scholar 

  2. Charlier JC, Blasé X, Roche S (2007) Rev Mod Phys 79:677–732

    Article  CAS  Google Scholar 

  3. Cho JH, Park CR (2007) Catal Today 120:407–412

    Article  CAS  Google Scholar 

  4. Cabria I, Lopez MJ, Alonso JA (2005) J Chem Phys 123:204721–204729

    Article  CAS  Google Scholar 

  5. Deng W, Xu X, Goddard WA (2004) Phys Rev Lett 92:166103–166104

    Article  Google Scholar 

  6. Bonard JM, Salvetat JP, Stockli T, de Heer WA, Forro L, Chatelain A (1998) Appl Phys Lett 73:918–920

    Article  CAS  Google Scholar 

  7. Thostenson ET, Ren Z, Chou TW (2001) Compos Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  8. Bakshi SR, Lahiri D, Agarwal A (2010) Int Mater Rev 55:41–62

    Article  CAS  Google Scholar 

  9. Kawasaki S, Hara T, Iwai Y, Suzuki Y (2008) Mater Lett 62:2917–2920

    Article  CAS  Google Scholar 

  10. Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE (2000) J Electrochem Soc 147:2845–2852

    Article  CAS  Google Scholar 

  11. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, Mclean RS, Onoa GB, Samsonidze GG, Semke ED, usrey M, Walls DJ (2003) Science 28:1545–1548

    Article  Google Scholar 

  12. Mpourmpakis G, Froudakis GE, Andriotis AN, Menon M (2007) J Phys Chem C Lett 3:6593–6596

    Article  Google Scholar 

  13. Zhao J, Han J, Lu JP (2002) Phys Rev B 65:193401–193404

    Article  Google Scholar 

  14. Barberio M, Barone P, Bonano A, Camarca M, Masciari E, Oliva A, Xu F (2009) Superlattices Microstruct 46:369–373

    Article  CAS  Google Scholar 

  15. Lee RS, Kim HJ, Fischer JE, Thess A, Smalley RE (1997) Nature 388:255–257

    Article  CAS  Google Scholar 

  16. Liu HJ, Chan CT (2003) Solid State Commun 125:77–82

    Article  CAS  Google Scholar 

  17. Ni M, Huang L, Guo L, Zeng Z (2010) Int J Hydrogen Energy 35:3546–3549

    Article  CAS  Google Scholar 

  18. Claye A, Fischer JE, Metrot A (2000) Chem Phys Lett 330:61–67

    Article  CAS  Google Scholar 

  19. Claye A, Rahman S, Fischer JE, Sirenko A, Sumanasekera GU, Eklund PC (2001) Chem Phys Lett 333:16–22

    Article  CAS  Google Scholar 

  20. Koh W, Choi JI, Donaher K, Lee SG, Jang SS (2011) Appl Mater Interface 3:1186

    Article  CAS  Google Scholar 

  21. Froudakis GE (2001) Nano Lett 1:531–533

    Article  CAS  Google Scholar 

  22. Zaporotskova IV, Lebedev NG, Chernozatonskil LA (2004) Phys Solid State 46:1137–1142

    Article  Google Scholar 

  23. Duan X, Akdim B, Pachter R (2005) App Surf Sci 243:11–18

    Article  CAS  Google Scholar 

  24. Shirvani BB, Beheshtian J, Esrafili MD, Hadipour L (2010) Phys B 405:1455–1460

    Article  CAS  Google Scholar 

  25. Azizi K, Hashemianzadeh SM, Bahramifar S (2011) Cur Appl Phys 11:776–782

    Article  Google Scholar 

  26. Baroni S, Dal Corso A, de Gironcoli S, Giannozzi P (2007) http://www.quantum-espresso.org

  27. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  28. von Barth U, Pedroza AC (1985) Phys Scr 32:353

    Article  Google Scholar 

  29. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  30. Ouyang M, Huang JH, Cheung CL, Lieber CM (2001) Science 292:702–705

    Article  CAS  Google Scholar 

  31. Gulseren O, Yildirim T, Ciraci S (2002) Phys Rev B 65:153405-4

    Google Scholar 

  32. Fagan SB, Mota R, dasilva AJR, Fazzio A (2003) Phys B 982:340–342

    Google Scholar 

  33. Chen CW, Lee MH, Clark SJ (2004) Nano Technol 15:1837–1843

    CAS  Google Scholar 

  34. Liu HJ, Chan CT (2002) Phys Rev B 66:115416–115425

    Article  Google Scholar 

  35. Kurti J, Zolyomi V, Kertesz M, Sun G, Baughman RH, Kuzmany H (2004) Carbon 42:971–978

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Hamadanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamadanian, M., Tavangar, Z. & Noori, B. Modification of the electronic properties of zigzag (n = 5–10) and armchair (n = 3, 5) carbon nanotubes by K atom adsorption. Struct Chem 25, 1005–1012 (2014). https://doi.org/10.1007/s11224-013-0369-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0369-z

Keywords

Navigation