Skip to main content
Log in

The potential energy surface of singlet cyclobutadiene and substituted analogs: a coupled-cluster study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Coupled-cluster investigations (CCSD/cc-pVDZ and CCSD/cc-pVQZ//CCSD/cc-pVDZ) of singlet cyclobutadiene and fifteen-substituted analogs were conducted. A local minimum with a square frame does not exist on their potential surfaces. The well-known rectangular D2h minimum, the square D4h transition state, and two additional stationary points were found on cyclobutadiene’s potential surface. This included a transition state with a rhombic carbon ring and C2h symmetry, separating two equivalent puckered C2v local minima. The predicted barriers were 19.7 and 19.8 kcal/mol at the CCSD/cc-pVDZ and CCSD/cc-pVQZ//CCSD/cc-pVDZ levels, respectively. The relative strain energies of rectangular D2h cyclobutadiene and all fifteen-substituted analogs were obtained from isodesmic reactions. Progressive substitution with methyl or BH2 groups continuously lowers ring strain while increasing substitution with fluorines or trifluoromethyl groups steadily increases ring strain. C4(BH2)4 is 16.6 and 13.3 kcal/mol less strained than cyclobutadiene while C4F4 is 17.7 and 21.5 kcal/mol more strained at the levels above. Cyclobutadiene is more strained than both cyclopropene and cyclobutene by 12.2 and 37.0 kcal/mol, respectively. Electron density contours indicate that fluorine substitution raised the electron density especially in the short C=C ring bonds above/below the ring plane (π-electrons) but not in the ring plane (σ-electrons). BH2-substitutions lower the ring π-electron density with little effect in the ring plane. Methyl substituents have little effect on electron densities. All rings retain a strong bond alternation tendency (rectangular) whether substituted with electron-donating or -attracting groups. One-bond coupling constants and the percent p-character in ring C-to-C and C-to-substituent bonds are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lefebvre R, Moiseyev N (1990) J Am Chem Soc 112:5052–5054

    Article  CAS  Google Scholar 

  2. Eckert-Maksić M, Vazdar M, Barbatti M, Lischka H, Maksić ZB (2006) J Chem Phys 125:064310

    Article  Google Scholar 

  3. Lyakh DI, Lotrich VF, Bartlett RJ (2011) Chem Phys Lett 501:166–171

    Article  CAS  Google Scholar 

  4. Maier G, Kalinowski HO, Euler K (1982) Angew Chem Int Ed Engl 21:693

    Article  Google Scholar 

  5. Chapman OL, McIntosh CL, Pacansky J (1973) J Am Chem Soc 95:614–617 and the references therein

    Article  CAS  Google Scholar 

  6. Masamune S, Souto-Bachiller FA, Machiguchi T, Bertie JE (1978) J Am Chem Soc 100:4889–4891

    Article  CAS  Google Scholar 

  7. Masamune S, Nakamura N, Suda M, Ona H (1973) J Am Chem Soc 95:8481–8483

    Article  CAS  Google Scholar 

  8. Delbaere LTJ, James MNG, Nakamura N, Masamune S (1975) J Am Chem Soc 97:1973–1974

    Article  CAS  Google Scholar 

  9. Hess BA Jr, Carsky P, Schaad LJ (1983) J Am Chem Soc 105:695–701

    Article  CAS  Google Scholar 

  10. McMahon RJ, Esselman BJ (2012) J Phys Chem A 116:483–490 and the references therein

    Google Scholar 

  11. Demel O, Shamasundar KR, Kong L, Nooijen M (2008) J Phys Chem A 112:11895–11902

    Article  CAS  Google Scholar 

  12. Balkova A, Bartlett RJ (1994) J Chem Phys 101:8972–8987

    Article  CAS  Google Scholar 

  13. Kollmar H, Staemmler V (1978) J Am Chem Soc 100:4304–4305

    Article  CAS  Google Scholar 

  14. Borden WT, Davidson ER, Hart P (1978) J Am Chem Soc 100:388–392

    Article  CAS  Google Scholar 

  15. Jafri JA, Newton MD (1978) J Am Chem Soc 100:5012–5017

    Article  CAS  Google Scholar 

  16. Legrand YM, Lee Avd, Barboiu M (2010) Science 329:299–302 and references therein

    Article  CAS  Google Scholar 

  17. Bartlett RJ, Purvis GD III (1978) Int J Quantum Chem 14:561

    Article  CAS  Google Scholar 

  18. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Int J Quantum Chem 14:545

    Article  CAS  Google Scholar 

  19. Cizek J (1969) In: Hariharan PC (ed) Advances in chemical physics, vol 14. Wiley Interscience, New York, p 35

  20. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910

    Article  CAS  Google Scholar 

  21. Scuseria GE, Janssen CL, Schaefer HF III (1988) J Chem Phys 89:7382

    Article  CAS  Google Scholar 

  22. Scuseria GE, Schaefer HF III (1989) J Chem Phys 90:3700

    Article  CAS  Google Scholar 

  23. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  24. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  25. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  26. Günther H (1995) NMR spectroscopy: basic principles, concepts, and applications in chemistry, 2nd edn. Wiley, New York, p 505

  27. Günther H (1995) NMR spectroscopy: basic principles, concepts, and applications in chemistry, 2nd edn. Wiley, New York, p 534

  28. Gaussian 09; Revision A.02; and Revision B.01; Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009, 2010) Gaussian Inc., Wallingford

  29. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  31. Lutnæs OB, Ruden TA, Helgaker T (2004) Magn Reson Chem 42:117–127

    Article  Google Scholar 

  32. Ruden TA, Helgaker T, Jaszuński M (2004) Chem Phys 296:53–62

    Article  CAS  Google Scholar 

  33. Hansen PE, Led JJ (1981) Org Magn Reson 15(3):288–293

    Article  CAS  Google Scholar 

  34. Hill EA, Roberts JD (1967) J Am Chem Soc 89:2047–2049

    Article  CAS  Google Scholar 

  35. Goldish E, Hedberg K, Schomaker V (1956) J Am Chem Soc 78:2714–2716

    Article  CAS  Google Scholar 

  36. Peterson KA, Woon DE, Dunning TH Jr (1994) J Chem Phys 100:7410–7415

    Article  CAS  Google Scholar 

  37. Wilson AK, van Mourik T, Dunning TH Jr (1996) J Mol Struct THEOCHEM 388:339–349

    Article  CAS  Google Scholar 

  38. Barone V (1996) In: Chong DP (ed) Recent advances in density functional methods, part I. World Scientific, Singapore

    Google Scholar 

  39. Pyykkö P, Atsumi M (2009) Chem Eur J 15(1):186

    Article  Google Scholar 

  40. Pyykkö P, Atsumi M (2009) Chem Eur J 15(46):12770

    Article  Google Scholar 

  41. Pyykkö P, Riedel S, Patzschke M (2005) Chem Eur J 11(12):3511

    Article  Google Scholar 

  42. Pyykkö P (2012) Phys Rev B 85:024115

    Article  Google Scholar 

  43. Bader RFW (1985) Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  44. Eckert-Maksić M, Lischka H, Maksić ZB, Vazdar M (2009) J Phys Chem A 113:8351–8358

    Article  Google Scholar 

  45. Menke JL, Patterson EV, McMahon RJ (2010) J Phys Chem A 114:6431–6437

    Article  CAS  Google Scholar 

  46. Allen FH (1982) Tetrahedron 38:645–655

    Article  CAS  Google Scholar 

  47. Closs GL, Krantz KD (1966) J Org Chem 31:638

    Article  CAS  Google Scholar 

  48. Binger P, Wedermann P, Brinker UH (2000) Org Synth 77:254–259

    Google Scholar 

  49. Binger P, Wedermann P, Brinker UH (2004) Org Synth Collect 10:231–234

    Google Scholar 

  50. Staley SW, Norden TD, Su CF, Rall M, Harmony MD (1987) J Am Chem Soc 109:2880–2884

    Article  CAS  Google Scholar 

  51. Carter FL, Frampton VL (1964) Chem Rev 64:497–525

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The computational resources were provided by the Mississippi Center for Supercomputing Research (MCSR). H. Xu would like to thank Dr. Brian Hopkins and Mr. Ben Pharr of MCSR for their helpful technical support. The technical support provided by Drs. Fox and Clemente of Gaussian, Inc., regarding the Gaussian03/09 suites of programs is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanying Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5,491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Saebo, S. & Pittman, C.U. The potential energy surface of singlet cyclobutadiene and substituted analogs: a coupled-cluster study. Struct Chem 25, 635–648 (2014). https://doi.org/10.1007/s11224-013-0352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0352-8

Keywords

Navigation