Skip to main content
Log in

Calix[4]arene-bis(t-octylbenzo-18-crown-6) as an extraordinarily effective macrocyclic receptor for the univalent thallium cation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

From extraction experiments and \( \gamma \)-activity measurements, the exchange extraction constant corresponding to the equilibrium Tl+ (aq) + 1·Cs+ (org) ⇔ 1·Tl+ (org) + Cs+ (aq) taking place in the two-phase water–phenyltrifluoromethyl sulfone (abbrev. FS 13) system (1 = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, org = FS 13 phase) was evaluated as log K ex (Tl+, 1·Cs+) = 1.7 ± 0.1. Further, the extraordinarily high stability constant of the 1·Tl+ complex in FS 13 saturated with water was calculated for a temperature of 25 °C: log β org(1·Tl+) = 13.1 ± 0.2. Finally, by using quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Tl+ was derived. In the resulting 1·Tl+ complex, the “central” cation Tl+ is bound by eight bond interactions to six oxygen atoms from the respective 18-crown-6 moiety and to two carbons of the corresponding two benzene rings of the parent receptor 1 via cation–π interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Böhmer V (1995) Angew Chem Int Ed 34:713–745

    Article  Google Scholar 

  2. Alfieri C, Dradi E, Pochini A, Ungaro R, Andreetti GD (1983) J Chem Soc Chem Commun: 1075–1077

  3. Asfari Z, Wenger S, Vicens J (1994) J Incl Phenom Mol Recogn 19:137–148

    CAS  Google Scholar 

  4. Gutsche CD (1998) Calixarenes revisited. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  5. Ungaro R, Casnati A, Ugozzoli F, Pochini A, Dozol JF, Hill C, Rouquette H (1994) Angew Chem Int Ed 33:1506–1509

    Article  Google Scholar 

  6. Casnati A, Pochini A, Ungaro R, Ugozzoli F, Arnaud F, Fanni S, Schwing MJ, Egberink RJM, de Jong F, Reinhoudt DN (1995) J Am Chem Soc 117:2767–2777

    Article  CAS  Google Scholar 

  7. Thuéry P, Nierlich M, Bryan JC, Lamare V, Dozol JF, Asfari Z, Vicens J (1997) J Chem Soc Dalton Trans: 4191–4202

  8. Deng Y, Sachleben RA, Moyer BA (1995) J Chem Soc Faraday Trans 91:4215–4222

    Article  CAS  Google Scholar 

  9. Sachleben RA, Bonnesen PV, Descazeaud T, Haverlock TJ, Urvoas A, Moyer BA (1999) Solvent Extr Ion Exch 17:1445–1459

    Article  CAS  Google Scholar 

  10. Haverlock TJ, Bonnesen PV, Sachleben RA, Moyer BA (2000) J Incl Phenom Macrocycl Chem 36:21–37

    Article  CAS  Google Scholar 

  11. Wintergerst MP, Levitskaia TG, Moyer BA, Sessler JL, Delmau LH (2008) J Am Chem Soc 130:4129–4139

    Article  CAS  Google Scholar 

  12. Makrlík E, Vaňura P (1985) Talanta 32:423–429

    Article  Google Scholar 

  13. Makrlík E, Vaňura P, Selucký P (2009) J Solut Chem 38:1129–1138

    Article  CAS  Google Scholar 

  14. Toman P, Makrlík E, Vaňura P, Kašička V (2011) Z Phys Chem 225:265–270

    Article  CAS  Google Scholar 

  15. Makrlík E, Budka J, Vaňura P (2011) Z Phys Chem 225:271–276

    Article  CAS  Google Scholar 

  16. Makrlík E, Vaňura P, Selucký P (2010) J Radioanal Nucl Chem 283:571–575

    Article  CAS  Google Scholar 

  17. Makrlík E, Vaňura P, Selucký P (2010) J Radioanal Nucl Chem 284:137–142

    Article  CAS  Google Scholar 

  18. Romanovskiy VN, Smirnov IV, Babain VA, Todd TA, Herbst RS, Law JD, Brewer KN (2001) Solvent Extr Ion Exch 19:1–21

    Article  CAS  Google Scholar 

  19. Law JD, Herbst RS, Todd TA, Romanovskiy VN, Babain VA, Esimantovskiy VM, Smirnov IV, Zaitsev BN (2001) Solvent Extr Ion Exch 19:23–36

    Article  CAS  Google Scholar 

  20. Herbst RS, Peterman DR, Tillotson RD, Delmau LH (2008) Solvent Extr Ion Exch 26:163–174

    Article  CAS  Google Scholar 

  21. Hawthorne MF, Young DC, Andrews TD, Howe DV, Pilling RL, Pitts AD, Reintjes M, Jr. Warren LF, Wegner PA (1968) J Am Chem Soc 90:879–896

    Article  CAS  Google Scholar 

  22. Makrlík E, Vaňura P, Selucký P (2011) J Radioanal Nucl Chem 288:177–180

    Article  CAS  Google Scholar 

  23. Daňková M, Makrlík E, Vaňura P (1997) J Radioanal Nucl Chem 221:251–253

    Article  Google Scholar 

  24. Makrlík E, Vaňura P (1998) ACH-Models Chem 135:213–218

    Google Scholar 

  25. Makrlík E, Vaňura P (2006) Monatsh Chem 137:157–161

    Article  CAS  Google Scholar 

  26. Makrlík E, Toman P, Vaňura P, Moyer BA (2013) J Mol Struct 1033:14–18

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford CT

  30. Kříž J, Dybal J, Makrlík E (2006) Biopolymers 82:536–548

    Article  CAS  Google Scholar 

  31. Kříž J, Dybal J, Makrlík E, Vaňura P, Lang J (2007) Supramol Chem 19:419–424

    Article  CAS  Google Scholar 

  32. Kříž J, Dybal J, Makrlík E, Vaňura P (2008) Supramol Chem 20:387–395

    Article  CAS  Google Scholar 

  33. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2008) Supramol Chem 20:487–494

    Article  CAS  Google Scholar 

  34. Kříž J, Dybal J, Makrlík E, Budka J (2008) J Phys Chem A 112:10236–10243

    Article  CAS  Google Scholar 

  35. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2009) J Phys Chem A 113:5896–5905

    Article  CAS  Google Scholar 

  36. Kříž J, Toman P, Makrlík E, Budka J, Shukla R, Rathore R (2010) J Phys Chem A 114:5327–5334

    Google Scholar 

  37. Kříž J, Dybal J, Makrlík E, Vaňura P, Moyer BA (2011) J Phys Chem B 115:7578–7587

    Article  CAS  Google Scholar 

  38. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  39. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873–1885

  40. Hobza P, Šponer J (1999) Chem Rev 99:3247–3276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 “Environmental Aspects of Sustainable Development of Society,” by the Czech Ministry of Education, Youth, and Sports (Project MSM 6046137307), and by the Czech Science Foundation (Project P 205/10/2280). Finally, the participation of B.A.M. was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Makrlík.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makrlík, E., Toman, P., Vaňura, P. et al. Calix[4]arene-bis(t-octylbenzo-18-crown-6) as an extraordinarily effective macrocyclic receptor for the univalent thallium cation. Struct Chem 25, 847–852 (2014). https://doi.org/10.1007/s11224-013-0349-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0349-3

Keywords

Navigation