Skip to main content

Advertisement

Log in

Theoretical study for the CH3C(O)(CH2)2OH + OH reaction

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The mechanisms and the kinetics of the OH radical reaction with 4-hydroxy-2-butanone (4H2B) are investigated theoretically. Five hydrogen-abstraction channels are identified for the title reaction. The first potential energy profile of the title reaction is presented. The rate constants for each reaction channel are evaluated using transition state theory method in the temperature range of 200–1,000 K. Branching ratio of the title reaction is calculated and plotted. It is shown that the “in-plane hydrogen abstraction” from the methoxy end is the dominant channel, and the other hydrogen-abstraction channels play the minor role. The comparison between theoretical and experimental results is discussed. The three-parameter Arrhenius expression for the rate constants is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ciccioli P, Brancaleoni E, Frattoni M, Cecinato A, Brachetti A (1993) Atmospheric Environ 27:1891–1901

    Article  Google Scholar 

  2. Muller K, Pelzing M, Gnauk T, Kappe A, Teichmann U, Spindler G, Haferkorn S, Jahn Y, Herrmann H (2002) Chemosphere 49:1247–1256

    Article  CAS  Google Scholar 

  3. Wildt J, Kobel K, Schuh-Thomas G, Heiden AC (2003) J Atmospheric Chem 45:173–196

    Article  CAS  Google Scholar 

  4. Baugh J, Ray W, Black F, Snow R (1987) Atmospheric Environ 21:2077–2082

    Article  CAS  Google Scholar 

  5. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2001) Environ Sci Technol 35:1716–1728

    Article  CAS  Google Scholar 

  6. Grosjean D, Williams EL, Grosjean E, Andino JM, Seinfeld JH (1993) Environ Sci Technol 27:2754–2758

    Article  CAS  Google Scholar 

  7. de Andrade MVAS, Pinheiro HLC, Pereira PAD, de Andrade JB (2002) Quim Nova 25:1117–1131

    Article  Google Scholar 

  8. Calvert JG, Madronich SJ (1987) Geophys Res 92:2211–2217

    Article  CAS  Google Scholar 

  9. Baker J, Arey J, Atkinson R (2005) J Photochem Photobiol A Chem 176:143–148

    Article  CAS  Google Scholar 

  10. Aschmann SM, Arey J, Atkinson R (2000) Environ Sci Technol 34:1702–1706

    Article  CAS  Google Scholar 

  11. Atkinson R, Baulch DL, Cox RA, Hampson RF, Kerr JA, Rossi MJ, Troe J (1997) J Phys Chem Ref Data 26:1329–1499

    Article  CAS  Google Scholar 

  12. Atkinson R, Arey J, Aschmann SM (2008) Atmospheric Environ 42:5859–5871

    Article  CAS  Google Scholar 

  13. Aschmann SM, Arey J, Atkinson R (2000) J Phys Chem A 104:3998–4003

    Article  CAS  Google Scholar 

  14. Dillon TJ, Horowitz A, Holscher D, Crowley JN, Vereecken L, Peeters J (2006) Phys Chem Chem Phys 8:236–246

    Article  CAS  Google Scholar 

  15. Butkovskaya NI, Pouvesle N, Kukui A, Liu RZ, Le Bras G (2006) J Phys Chem A 110:13492–13499

    Article  CAS  Google Scholar 

  16. Dagaut P, Liu RZ, Wallington TJ, Kurylo MJ (1989) J Phys Chem A 93:7838–7840

    Article  CAS  Google Scholar 

  17. Orlando JJ, Tyndall GS, Fracheboud JM, Estupinan EG, Haberkorn S, Zimmer A (1999) Atmospheric Environ 33:1621–1629

    Article  CAS  Google Scholar 

  18. Baker J, Arey J, Atkinson R (2004) J Phys Chem A 108:7032–7037

    Article  CAS  Google Scholar 

  19. Messaadia L, El Dib G, Ferhati A, Roth E, Chakir A (2012) Chem Phys Lett 529:16–22

    Article  CAS  Google Scholar 

  20. Bethel HL, Atkinson R, Arey J (2001) Int J Chem Kinet 33:310–316

    Article  CAS  Google Scholar 

  21. El Dib G, Sleiman C, Canosa A, Travers D, Courbe J, Sawaya T, Mokbel I, Chakir A (2013) J Phys Chem A 117:117–125

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford

  23. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  25. Yu AY, Zhang HX, (2013) Mole Phys 111. doi: 10.1080/00268976.2013.817622

  26. Yu AY, Zhang HX, (2013) J Mole Model. doi: 10.1007/s00894-013-1960-3

  27. Scuseria GE, Schaefer HF (1989) J Chem Phys 90:3700–3703

    Article  CAS  Google Scholar 

  28. Pople JA, Gordon MH, Raghavachari K (1989) J Chem Phys 87:5968–5975

    Article  Google Scholar 

  29. Chuang YY, Corchado JC, Fast PL, Villa J, Hu WP, Liu YP, Lynch GC, Jackels CF, Nguyen KA, Gu MZ, Rossi I, Coitino EL, Claylon S, Melissas VS, Lynch BJ, Steckler R, Garrett BC, Isaacson AD, Truhlar DG (2007) POLYRATE version 9. 6, University of Minnesota, Minneapolis, MN

  30. Truhlar DG (1995) In: Heidrich D (ed) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht, p 229

  31. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  32. Hu WP, Truhlar DG (1996) J Am Chem Soc 118:860–869

    Article  CAS  Google Scholar 

  33. Garrett BC, Truhlar DG (1979) J Chem Phys 70:1593–1598

    Article  CAS  Google Scholar 

  34. Liu YP, Lynch GC, Truong TN, Liu DH, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408–2415

    Article  CAS  Google Scholar 

  35. Steckler R, Hu WP, Liu YP, Lynch GC, Garrett BC, Isaacson AD, Melissas VS, Lu DP, Troung TN, Rai SN, Hancock GC, Lauderdate JG (1995) Comput Phys Commun 88:341–343

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ang-yang Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Ay. Theoretical study for the CH3C(O)(CH2)2OH + OH reaction. Struct Chem 25, 607–615 (2014). https://doi.org/10.1007/s11224-013-0323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0323-0

Keywords

Navigation