Skip to main content
Log in

DFT study on the adsorption and dissociation of hydrogen sulfide on MgO nanotube

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The adsorption of a H2S molecule on the surface of an MgO nanotube was investigated using density functional theory. It was found that H2S molecule can be associatively adsorbed on the tube surface without any energy barrier or it can be dissociated into –H and –SH species overcoming energy barrier of 4.03–7.77 kcal/mol. The associative adsorption is site selective so that the molecule is oriented in such a way that the sulfur atom was linked to an Mg atom. The HOMO–LUMO energy gap of the tube has slightly changed upon associative adsorption, while they were significantly influenced by dissociation process. Especially, the highest occupied molecular orbital of the tube shifts to higher energies which can facilitate electron emission current from the tube surface. Also, energy gap of the tube dramatically decreased by about 0.93–1.05 eV which influences the electrical conductivity of the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sasaoka E, Hirano S, Kasaoka S, Sakata Y (1994) Energy Fuels 8:1100–1105

    Article  CAS  Google Scholar 

  2. Rodriguez JA, Maiti A (2000) J Phys Chem B 104:3630–3638

    Article  CAS  Google Scholar 

  3. Thomas JM, Thomas WJ (1997) Principles and practice of heterogeneous catalysis. VCH, New York

    Google Scholar 

  4. Oudar J, Wise H (1985) Deactivation and poisoning of catalysts. Dekker, New York

    Google Scholar 

  5. Jirsak T, Dvorak J, Rodriguez JA (1999) J Phys Chem B 103:5550–5559

    Article  CAS  Google Scholar 

  6. Rodriguez JA, Jirsak T, Chaturvedi S, Kuhn M (1999) Surf Sci 442:400–412

    Article  CAS  Google Scholar 

  7. Chaturvedi S, Rodriguez JA, Jirsak T, Hrbek J (1998) J Phys Chem B 102:7033–7043

    Article  CAS  Google Scholar 

  8. Wu Q, Yakshinskiy BV, Madey TE (2003) Surf Sci 523:1–11

    Article  CAS  Google Scholar 

  9. Kyotani T, Kawashima H, Tomita A (1989) Environ Sci Technol 23:218–223

    Article  CAS  Google Scholar 

  10. Lin J, May JA, Didziulis SV, Solomon EI (1992) J Am Chem Soc 114:4718–4727

    Article  CAS  Google Scholar 

  11. Haimour N, EI-Bishtawi R, Ail-Wahbi A (2005) Desalination 181:145–152

    Article  CAS  Google Scholar 

  12. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  13. Tontapha S, Morakot N, Ruangpornvisuti V, Wanno B (2012) Struct Chem 23:1819–1830

    Article  CAS  Google Scholar 

  14. Beheshtian J, Bagheri Z, Kamifiroozi M, Ahmadi A (2012) Struct Chem 23:653–657

    Article  CAS  Google Scholar 

  15. Yang M, Zhang Y, Huang S, Liu H, Wang P, Tian H (2011) Appl Surf Sci 258:1429–1436

    Article  CAS  Google Scholar 

  16. Carrasco J, Illas F, Bromley ST (2007) Phys Rev Lett 99:235502–235505

    Article  Google Scholar 

  17. Dong RB, Chen XS, Wang XF, Lu W (2008) J Chem Phys 129:044705–044709

    Article  Google Scholar 

  18. Wang GW, Hattori H (1984) J Chem Soc, Faraday Trans 1:1039–1047

    Article  Google Scholar 

  19. Beheshtian J, Baei MT, Bagheri Z, Peyghan AA (2012) Struct Chem 23:1981–1986

    Article  CAS  Google Scholar 

  20. Ostrovskii VE (2002) Catal Today 77:141–160

    Article  CAS  Google Scholar 

  21. Zhang R, Liu H, Li J, Ling L, Wang B (2012) Appl Surf Sci 258:9932–9943

    Article  CAS  Google Scholar 

  22. Li X, Zhang G, Pan H (2012) J Hazard Mater 199:255–261

    Article  Google Scholar 

  23. Ito T, Kuramoto M, Yoshioka M, Tokuda T (1983) J Phys Chem 87:4411–4416

    Article  CAS  Google Scholar 

  24. Beheshtian J, Peyghan AA, Bagheri Z (2012) Sens Actuators B Chem 171–172:846–852

    Article  Google Scholar 

  25. Moradi M, Peyghan AA, Bagheri Z, Kamifiroozi M (2012) J Mol Model 18:3535–3540

    Article  CAS  Google Scholar 

  26. Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2012) J Mol Model 18:4745–4750

    Article  CAS  Google Scholar 

  27. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  28. Bilalbegovic G (2004) Phys Rev B 70:045407–045412

    Article  Google Scholar 

  29. Wilson M (1997) J Phys Chem 101:4917–4924

    Article  CAS  Google Scholar 

  30. Beheshtian J, Kamifiroozi M, Bagheri Z, Ahmadi A (2011) Physica E 44:546–549

    Article  CAS  Google Scholar 

  31. Peyghan AA, Baei MT, Hashemian S (2013) J Cluster Sci 24:341–347

    Article  CAS  Google Scholar 

  32. Beheshtian J, Peyghan AA, Bagheri Z (2012) Physica E 44:1963–1968

    Article  CAS  Google Scholar 

  33. Li S (2006) Semiconductor physical electronics, 2nd edn. Springer, USA

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Moradi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagheri, Z., Moradi, M. DFT study on the adsorption and dissociation of hydrogen sulfide on MgO nanotube. Struct Chem 25, 495–501 (2014). https://doi.org/10.1007/s11224-013-0321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0321-2

Keywords

Navigation