Skip to main content

Advertisement

Log in

Multiscale study on hydrogen storage based on covalent organic frameworks

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we performed a multiscale study on the hydrogen storage capacity of Li–Sc doped and Li-C60 injected covalent organic frameworks (COFs)-based phthalocyanine, porphyrin and TBPS COFs. We combined the first-principles studies of hydrogen adsorption and grand canonical Monte Carlo (GCMC) simulations of hydrogen adsorption in nine designed COFs. The first-principles calculations revealed that the Li atoms can be doped on the surface of the Sc-doped COFs with binding energy from −83.9 to −160.2 kJ/mol. Each Li atom can bind three H2 molecules with the adsorption energy between −16.8 and −20.0 kJ/mol. The GCMC simulations have predicted that all the nine designed COFs can reach the Department of Energy’s 2015 target (5.5 wt% and 40 g/L) at T = 77 K and P = 100 bar. The optimum conditions of hydrogen storage for Li-C60@Li–Sc-PR-TBPS2, the promising materials, are T = 193 K (−80 °C) and P = 100 bar with a gravimetric H2 density of 8.19 wt% and volumetric H2 uptake of 42.6 g/L. Finally, we further convinced the importance of Sc in improving H2 uptake in doped COFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Züttel A (2003) Mater Today 6:24

    Article  Google Scholar 

  2. Tang F, Yuan W, Lu TM, Wang GC (2008) J Appl Phys 104:033534

    Article  Google Scholar 

  3. Huot J, Liang G, Schulz R (2003) J Alloy Compd 353:L12

    Article  CAS  Google Scholar 

  4. Li A, Lu RF, Wang Y, Wang X, Han KL, Deng WQ (2010) Angew Chem Int Ed 49:3330

    Article  CAS  Google Scholar 

  5. Furukawa H, Yaghi OM (2009) J Am Chem Soc 131:8875

    Article  CAS  Google Scholar 

  6. Kruse H, Grimme S (2009) J Phys Chem C 113:17006

    Article  CAS  Google Scholar 

  7. Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) Catal Today 120:246

    Article  CAS  Google Scholar 

  8. Fichtner M (2005) Adv Eng Mater 7:443

    Article  CAS  Google Scholar 

  9. Eletskiĭ AV (2004) Phys Usp 47:1119

    Article  Google Scholar 

  10. Yang Z, Xia Y, Mokaya R (2007) J Am Chem Soc 129:1673

    Article  CAS  Google Scholar 

  11. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  12. Eddaoudi M, Kim J, Rosi NL, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Science 295:469

    Article  CAS  Google Scholar 

  13. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402:276

    Article  CAS  Google Scholar 

  14. Côté AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM (2007) J Am Chem Soc 129:12914

    Article  Google Scholar 

  15. El-Kaderi HM, Hunt JR, Mendoza-Cortes JL, Côté AP, Taylor RE, O’Keeffe M, Yaghi OM (2007) Science 316:268

    Article  CAS  Google Scholar 

  16. Han SS, Furukawa H, Yaghi OM, Goddard WA (2008) J Am Chem Soc 130:11580

    Article  CAS  Google Scholar 

  17. Mulder FM, Dingermans TJ, Wagemaker M, Kearely GJ (2005) Chem Phys 317:113

    Article  CAS  Google Scholar 

  18. Kaye SS, Dailly A, Yaghi OM, Long JR (2007) J Am Chem Soc 129:14176

    Article  CAS  Google Scholar 

  19. Han SS, Deng WQ, Goddard WA (2007) Angew Chem Int Ed 46:6289

    Article  CAS  Google Scholar 

  20. Schröck K, Schröder F, Heyden M, Fischer RA, Havenith M (2008) Phys Chem Chem Phys 10:4732

    Article  Google Scholar 

  21. Lan J, Cao D, Wang W (2010) Langmuir 26:220

    Article  CAS  Google Scholar 

  22. Li F, Zhao J, Johansson B, Sun L (2010) Int J Hydrogen Energy 35:266

    Article  CAS  Google Scholar 

  23. Germain J, Fréchet JMJ, Svec F (2007) J Mater Chem 17:4989

    Article  CAS  Google Scholar 

  24. Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM, Qiu S, Zhu G (2009) Angew Chem Int Ed 48:9457

    Article  CAS  Google Scholar 

  25. Ghanem BS, Msayib KJ, McKeown NB, Harris KDM, Pan Z, Budd PM, Butler A, Selbie J, Book D, Walton A (2007) Chem Commun 0:67

  26. Klontzas E, Tylianakis E, Froudakis GE (2008) J Phys Chem C 112:9095

    Article  CAS  Google Scholar 

  27. Niu J, Rao BK, Jena P (1992) Phys Rev Lett 68:2277

    Article  CAS  Google Scholar 

  28. Rao BK, Jena P (1992) Europhys Lett 20:307

    Article  CAS  Google Scholar 

  29. Cao D, Lan J, Wang W, Smit B (2009) Angew Chem Int Ed 48:4730

    Article  CAS  Google Scholar 

  30. Lan J, Cao D, Wang W (2010) J Phys Chem C 114:3108

    Article  CAS  Google Scholar 

  31. Klontzas E, Tylianakis E, Froudakis GE (2009) J Phys Chem C 113:21253

    Article  CAS  Google Scholar 

  32. Roussel T, Bichara C, Gubbins KE, Pellenq RJM (2009) J Chem Phys 130:174717

    Article  Google Scholar 

  33. US DOE, (2009) Office of energy efficiency and renewable energy and the freedom CAR and fuel partnership; Targets for on board hydrogen storage systems for light-duty vehicles. https://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf

  34. Rao D, Lu R, Xiao C, Kan E, Deng K (2011) Chem Commun 47:7698

    Article  CAS  Google Scholar 

  35. Rowsell JLC, Yaghi OM (2005) Angew Chem Int Ed 44:4670

    Article  CAS  Google Scholar 

  36. Chae HK, Siberio-Pérez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) Nature 427:523

    Article  CAS  Google Scholar 

  37. Thornton AW, Nairn KM, Hill JM, Hill AJ, Hill MR (2009) J Am Chem Soc 131:10662

    Article  CAS  Google Scholar 

  38. Spitler EL, Dichtel WR (2010) Nat Chem 2:672

    Article  CAS  Google Scholar 

  39. Guo JH, Zhang H, Liu ZP, Cheng XL (2010) J Phys Chem C 116:15908

    Article  Google Scholar 

  40. Abel M, Clair S, Ourdjini O, Mossoyan M, Porte L (2011) J Am Chem Soc 133:1203

    Article  CAS  Google Scholar 

  41. Sperl A, Kroger J, Berndt R (2011) J Am Chem Soc 133:11007

    Article  CAS  Google Scholar 

  42. Lü K, Zhou J, Zhou L, Wang Q, Sun Q, Jena P (2011) Appl Phys Lett 99:163104

    Article  Google Scholar 

  43. Garberoglio G (2007) Langmuir 23:12154

    Article  CAS  Google Scholar 

  44. Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024

    Article  Google Scholar 

  45. Materials Studio DMol3 and Forcite, version 5.0, Accelrys Inc, San Diego

  46. Becke AD (1992) J Chem Phys 97:9173

    Article  CAS  Google Scholar 

  47. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  48. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  49. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) J Chem Phys 109:1223

    Article  CAS  Google Scholar 

  50. Hariharan PC, Pople JA (1973) Theor Chim Acta (Berl) 28:213

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.02. Gaussian Inc., Pittsburgh

  52. Yang Q, Zhong C (2005) J Phys Chem B 109:11862

    Article  CAS  Google Scholar 

  53. Gupta A, Chempath S, Sanborn MJ, Clark LA, Snurr RQ (2003) Mol Simul 29:29

    Article  CAS  Google Scholar 

  54. Snurr RQ, Bell AT, Theodorou DN (1993) J Phys Chem 97:13742

    Article  CAS  Google Scholar 

  55. Sun Q, Jena P, Wang Q, Marquez M (2006) J Am Chem Soc 128:9741

    Article  CAS  Google Scholar 

  56. Lochan RC, Head-Gordon M (2006) Phys Chem Chem Phys 8:1357

    Article  CAS  Google Scholar 

  57. Blomqvist A, Araújo CM, Srepusharawoot P, Ahuja R (2007) Proc Natl Acad Sci USA 104:20173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H. Zhang acknowledges financial support from the National Natural Science Foundation of China (NSFC. Grant No. 11074176 and NSAF. Grant No. 10976019) and the support from Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100181110080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, TF., Zhang, H. Multiscale study on hydrogen storage based on covalent organic frameworks. Struct Chem 25, 503–513 (2014). https://doi.org/10.1007/s11224-013-0319-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0319-9

Keywords

Navigation