Skip to main content
Log in

Molecular orbital closed loops analysis of the third-order NLO response of polyanion [M8O26]4− (M = Cr, Mo, W): a TDDFT study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Molecular orbital closed loops theory was used to explain the mechanism of the third-order nonlinear optical (NLO) response of polyanion cage structure of polyoxometalate by TDDFT study. The third-order NLO properties of three octa-polyoxometalate anion clusters of VIB group metals, β-[Cr8O26]4−, β-[Mo8O26]4−, and β-[W8O26]4−, were studied by DFT/TDDFT method systematically. The geometric structures of β-[Cr8O26]4− and β-[W8O26]4− were separately simulated by DFT method, based on the crystallographically determined geometry of the β-[Mo8O26]4− ion, and the thermo stability, and the second static hyperpolarizabilities, γ iiii , γ iijj , and γmean were calculated by finite-field method as an extension of the usual DFT energy run, and the results suggest that with no ligands coordinated, all of the three clusters possess moderately large hyperpolarizabilities, and the molybdate ion possess much larger NLO response than the chromate and the tungstate ions. In order to find out the reason of the big difference in the hyperpolarizabilities of the three polyoxometalates of the same group metals, the electronic properties were also studied by DFT method for the discussion of the origination of the NLO response, specially, the mechanism of the electronic structure change affecting the NLO response is analyzed and exhibited by the molecular orbital “closed loops” theory which has usually been used to estimate the thermo stability and redox ability of the polyoxometalate anion cages.

Graphical abstract

Without the coordination by any ligands, polyanion [M8O26]4− (M = Cr, Mo, W) in high symmetry structures present moderately high third-order NLO response by TDDFT study, even higher than the one-dimensional metal–metal bond compounds Cr(II)4, Mo(II)4, and some C60 derivatives. A new thought of molecular “orbital loops” for the theoretical exploration of the mechanism of NLO response were introduced, and applied to the polyanions and proved to be an effective analyzing method

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  2. Pope MT, Muller A (1991) Angew Chem Int Ed Engl 30:34

    Article  Google Scholar 

  3. Baker LCW, Glick DC (1998) Chem Rev 98:3

    Article  CAS  Google Scholar 

  4. Pope MT, Müller A (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. Kluwer, Dordrecht

    Book  Google Scholar 

  5. Rhule JT, Hill CL, Judd DA (1998) Chem Rev 98:327

    Article  CAS  Google Scholar 

  6. Kortz U, Hussain F, Reicke M (2005) Angew Chem Int Ed 44:3773

    Article  CAS  Google Scholar 

  7. Mal SS, Kortz U (2005) Angew Chem Int Ed 44:3777

    Article  CAS  Google Scholar 

  8. Yang Y, Cao MH, Hu CW, Guo YH, Wang EB (2004) J Nanosci Nanotechnol 4:833

    Article  CAS  Google Scholar 

  9. Gregoriou VG, Rodman SE, Nair BR, Hammond PT (2002) J Phys Chem 106:11108

    Article  CAS  Google Scholar 

  10. Sasic S, Clark DA, Mitchell JC, Snowden MJ (2005) Appl Spectrosc 59:630

    Article  CAS  Google Scholar 

  11. Niven ML, Cruywagen JJ, Heyns JBB (2007) J Chem Soc Dalton Trans 1991

  12. Xu JQ, Wang RZ, Yang GY, Xing YH, Li DM, Bu WM et al (1999) Chem Commun 11:983

    Article  Google Scholar 

  13. Coe BJ, Jones LA, Harris JA, Sanderson EE (2003) Dalton Trans 2335

  14. Zhang LH, Wang Y, Ma F, Liu CG (2012) J Organomet Chem 716:245

    Article  CAS  Google Scholar 

  15. Janjua MRSA, Khan MU, Bashir B, Iqbal MA, Song YZ, Naqvi SAR, Khan ZA (2012) Comput Theor Chem 994:34

    Article  CAS  Google Scholar 

  16. Li FJ, Hu XJ, Sa RJ (2013) Mol Phys (in press)

  17. Koudoumas E, Konstantaki M, Mavromanolakis A, Couris S, Fanti M, Zerbetto F, Kordatos K, Prato M (2003) Chem Eur J 9:1529

    Article  CAS  Google Scholar 

  18. Huo YP, Zeng HP, Jiang HF (2006) Chin J Organ Chem 26:1657

    CAS  Google Scholar 

  19. Nomiya K, Miwa M (1984) Polyhedron 3:341

    Article  CAS  Google Scholar 

  20. Bridgeman AJ, Cavigliasso G (2002) Inorg Chem 41:3500

    Article  CAS  Google Scholar 

  21. Bridgeman AJ (2002) J Phys Chem A 106:12151

    Article  CAS  Google Scholar 

  22. Buckingham AD (1959) J Chem Phys 30:1580

    Article  CAS  Google Scholar 

  23. Calaminici P, Jug K, Köster AM (1998) J Chem Phys 109:7756

    Article  CAS  Google Scholar 

  24. Williams GRJ (1987) J Mol Struct Theochem 151:215

    Article  Google Scholar 

  25. Fonseca Guerra C, Visser O, Snijders JG, te Velde G, Baerends EJ (1995) In: Clementi E, Corongiu C (eds) Methods and techniques for computational chemistry. STEF, Calgary, p 303

    Google Scholar 

  26. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597

    Article  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  28. Schaefer CHuber, Ahlrichs R (1994) J Chem Phys 100:5829

    Article  CAS  Google Scholar 

  29. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  30. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  31. Cundari TR, Stevens WJ (1993) J Chem Phys 98:5555

    Article  CAS  Google Scholar 

  32. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Theoretical Chemistry Institute. University of Wisconsin, Madison

    Google Scholar 

  33. Tytko KH, Mehmke J, Fischer S (1999) Struct Bond (Berlin) 93:129

    Article  CAS  Google Scholar 

  34. Fukui H, Nakano M, Champagne B (2012) Chem Phys Lett 527:11

    Article  CAS  Google Scholar 

  35. Lascola R, Wright JC (1997) Chem Phys Lett 269:79

    Article  CAS  Google Scholar 

  36. Tytko KH, Mehmke J, Fischer S (1999) Struct Bond (Berlin) 93:129

    Article  CAS  Google Scholar 

  37. Göller AH, Erhardt S, Grummt UW (2002) J Mol Struct Theochem 585:143

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by National Natural Science Foundation of China (21277093), Liaoning BaiQianWan Talents Program (2010921004), Natural Science Foundation of Liaoning Province of China (201102156), and Program for Liaoning Excellent Talents in University (LR2011034). The authors also acknowledge the computer facility in the Virtual Laboratory for Computational Chemistry and Supercomputing Center of CNIC in Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Hu, X., Sa, R. et al. Molecular orbital closed loops analysis of the third-order NLO response of polyanion [M8O26]4− (M = Cr, Mo, W): a TDDFT study. Struct Chem 25, 539–549 (2014). https://doi.org/10.1007/s11224-013-0313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0313-2

Keywords

Navigation