Skip to main content
Log in

Capture of carbon dioxide by a nanosized tube of BeO: a DFT study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The adsorption of CO2 molecule in the interior and exterior surfaces of a BeO nanotube was investigated by means of density functional calculations in terms of energetic, electronic, and geometric properties. It was found that the existence of a CO2 inside a (4, 4) armchair tube is more stable than its adsorption on the outside by about 0.13 kcal/mol. The adsorption on the exterior surface is site-selective so that CO2 prefers to attack a Be atom from its one O-head, releasing energy of 14.30 kcal/mol. By increasing the number of adsorbed CO2 molecules, the adsorption energy is decreased. We predicted that the electronic properties and quantum molecular descriptors of the tube cannot be significantly influenced by the adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Millward AR, Yaghi OM (2005) J Am Chem Soc 127:17998

    Article  CAS  Google Scholar 

  2. Walton KS, Millward AR, Dubbeldam D, Forst H, Low JJ, Yaghi YM, Snurr RQ (2008) J Am Chem Soc 130:406

    Article  CAS  Google Scholar 

  3. Holloway S, Pearce JM, Hards VL, Ohsumi T, Gale J (1994) Energy 32:1194

    Article  Google Scholar 

  4. Valenzano L, Civalleri B, Chavan S, Palomino GT, Areán CO, Bordiga SJ (2010) J Phys Chem C 114:11185

    Article  CAS  Google Scholar 

  5. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  6. Peyghan AA, Omidvar A, Hadipour NL, Bagheri Z, Kamifiroozi M (2012) Physica E 44:1357

    Article  CAS  Google Scholar 

  7. Saha S, Dinadayalane TC, Leszcynska D, Leszcynski J (2012) Chem Phys Lett 541:85

    Article  CAS  Google Scholar 

  8. Saha S, Dinadayalane TC, Murray JS, Leszczynska D, Leszczynski J (2012) J Phys Chem C 116:22399

    Article  CAS  Google Scholar 

  9. Minitmire JW, White CT (1995) Carbon 33:893

    Article  Google Scholar 

  10. Beheshtian J, Peyghan AA, Bagheri Z (2012) Monatsh Chem 143:1623

    Article  CAS  Google Scholar 

  11. Contreras ML, Avila D, Alvarez J, Rozas R (2010) Struct Chem 21:573

    Article  CAS  Google Scholar 

  12. Dinadayalane TC, Leszczynski J (2010) Struct Chem 21:1155

    Article  CAS  Google Scholar 

  13. Beheshtian J, Peyghan AA, Bagheri Z (2012) J Mol Model 19:391

    Article  Google Scholar 

  14. Peralta-Inga Z, Boyd S, Murray J, O’Connor C, Politzer P (2003) Struct Chem 14:431

    Article  CAS  Google Scholar 

  15. Fathalian A, Moradian R, Shahrokhi M (2013) Solid State Commun 156:1

    Article  CAS  Google Scholar 

  16. Gorbunova MA, Shein IR, Makurin YN, Ivanovskaya VV, Kijko VS, Ivanovskii AL (2008) Physica E 41:164

    Article  CAS  Google Scholar 

  17. Duman S, Sutlu A, Bagcl S, Tutuncu HM, Srivastava GP (2009) J Appl Phys 105:033719

    Article  Google Scholar 

  18. Baumeier B, Kruger P, Pollmann J (2007) Phy Rev B 76:085407

    Article  Google Scholar 

  19. Sorokin PB, Fedorov AS, Chernozatonskii LA (2006) Phys Solid State 48:398

    Article  CAS  Google Scholar 

  20. Hamadanian M, Khoshnevis B, Kalantari Fotooh F (2011) Struct Chem 22:1205

    Article  CAS  Google Scholar 

  21. Knippenberg MT, Stuart SJ, Cheng H (2008) J Mol Model 14:343

    Article  CAS  Google Scholar 

  22. Guo JH, Zhang H (2011) Struct Chem 22:1039

    Article  CAS  Google Scholar 

  23. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  24. Beheshtian J, Peyghan AA, Bagheri Z (2012) Sens Actuators B: Chem 171–172:846

  25. Wanbayor R, Ruangpornvisuti V (2012) Appl Surf Sci 258:3298

    Article  CAS  Google Scholar 

  26. Beheshtian J, Ahmadi Peyghan A, Bagheri Z (2012) Physica E 44:1963

    Article  CAS  Google Scholar 

  27. Beheshtian J, Peyghan AA, Bagheri Z (2012) Appl Surf Sci 258:8171

    Article  CAS  Google Scholar 

  28. O’Boyle N, Tenderholt A, Langner K (2008) J Comput Chem 29:839

    Article  Google Scholar 

  29. Ma LC, Zhao HS, Yan WJ (2013) J Magnetism Magnetic Mater 330:174

    Article  CAS  Google Scholar 

  30. Saha S, Dinadayalane TC, Leszcynska D, Leszcynski J (2013) Chem Phys Lett 565:69

    Article  CAS  Google Scholar 

  31. Soltani A, Peyghan AA, Bagheri Z (2013) Physica E 48:176

    Article  CAS  Google Scholar 

  32. Kim D, Bouree JE, Kim SY (2006) Appl Phys A 83:111

    Article  CAS  Google Scholar 

  33. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  34. Chermette H (1999) J Comp Chem 20:129

    Article  CAS  Google Scholar 

  35. Geerlings QP, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  36. Roy RK, Saha S (2010) Annu Rep Prog Chem Sect C 106:118

    Article  CAS  Google Scholar 

  37. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  38. Koopmans T (1934) Physica 1:104

    Article  Google Scholar 

  39. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirous Yourdkhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyghan, A.A., Yourdkhani, S. Capture of carbon dioxide by a nanosized tube of BeO: a DFT study. Struct Chem 25, 419–426 (2014). https://doi.org/10.1007/s11224-013-0307-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0307-0

Keywords

Navigation