Skip to main content
Log in

Influence of fluorine substitution on the properties of CdO nanocluster : a DFT approach

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Fluorine substituted cadmium oxide (Cd n O n−1F) cluster for n = 2–6 of linear, ring and three dimensional structures were studied using B3LYP exchange correlation function with LanL2DZ as basis set. Different isomers were optimized to obtain structural stability and various parameters such as dipole moment, HOMO–LUMO gap, ionization potential, electron affinity, stability factor, binding energy, vibrational studies and optical absorption were studied and reported. The stability of the cluster depends on the binding energy and vibrational intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Demchenko IN, Chernyshova M, Tyliszczak T, Denlinger JD, Yu K, Speaks DT, Hemmers O, Walukiewicz W, Derkachov G, Lawniczak-Jablonska K (2011) Electronic structure of CdO studied by soft X-ray spectroscopy. J Electron Spectrosc Relat Phenom 184:249–253

    Article  CAS  Google Scholar 

  2. Lanje AS, Ningthoujam RS, Sharma SJ, Pode RB (2011) Electronic structure of CdO studied by soft X-ray spectroscopy. Indian J Pure Appl Phys 49:234–238

    CAS  Google Scholar 

  3. Gupta RK, Ghosh K, Patel R, Mishra SR, Kahol PK (2008) Highly conducting and transparent tin-doped CdO thinfilms for optoelectronic applications. Mater Lett 62:4103–4105

    Article  CAS  Google Scholar 

  4. Yakuphanoglu F (2011) Synthesis and electro-optic properties of nanosized-boron doped cadmium oxide thin films for solar cell applications. Sol Energy 85:2704–2709

    Article  CAS  Google Scholar 

  5. Singh G, Kapoor IPS, Dubey R, Srivastava P (2011) Synthesis, characterization and catalytic activity of CdO nanocrystals. Mater Sci Eng B 176:121–126

    Article  CAS  Google Scholar 

  6. Cho WM, He GR, Su TH, Lin YJ (2012) Transparent high-surface-work-function Al-doped CdO electrodes obtained by rf magnetron sputtering with oxygen flow. Appl Surf Sci 258:4632–4635

    Article  CAS  Google Scholar 

  7. Kamble AS, Pawar RC, Tarwal NL, More LD, Patil PS (2011) Ethanol sensing properties of chemosynthesized CdO nanowires and nanowalls. Mater Lett 65:1488–1491

    Article  CAS  Google Scholar 

  8. Pesic L (1988) A review of thick film glaze resistors. Microelectron J 19:71–87

    Article  CAS  Google Scholar 

  9. Marder L, Bernardes AM, Ferreira JZ (2004) Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system. Sep Purif Technol 37:247–255

    Article  CAS  Google Scholar 

  10. Ocampo IM, Ferandez AM, Sabastian PJ (1993) Transparent conducting CdO films formed by chemical bath deposition. Semicond Sci Technol 8:750–751

    Article  CAS  Google Scholar 

  11. Ortega M, Santana G, Morales-Acevedo A (2000) Optoelectronic properties of CdO/Si photodetectors. Solid State Electron 44:1765–1769

    Article  CAS  Google Scholar 

  12. Dakhel AA (2012) Near infrared transparent conducting CdO nanocrystallitefilms codoped with boron and hydrogen. Curr Appl Phys 12:1–6

    Article  Google Scholar 

  13. Hames Y, Eren San S (2004) CdO/Cu2O solar cells by chemical deposition. Sol Energy 77:291–294

    Article  CAS  Google Scholar 

  14. Baranov AM, Malov YuA, Teryoshin SA, Val’dner VO (1997) Investigation of the properties of CdO films. Tech Phys Lett 23:805–806

    Article  Google Scholar 

  15. Gupta RK, Ghosh K, Patel R, Kahol PK (2011) Low temperature processed highly conducting, transparent, and wide bandgap Gd doped CdO thin films for transparent electronics. J Alloys Compd 509:4146–4149

    Article  CAS  Google Scholar 

  16. Salunkhe RR, Shinde VR, Lokhande CD (2008) Liquefied petroleum gas (LPG) sensing properties of nanocrystalline CdO thin films prepared by chemical route: effect of molarities of precursor solution. Sens Actuators B 133:296–301

    Article  CAS  Google Scholar 

  17. Sathya Raj D, Krishnakumar T, Jayaprakash R, Prakash T, Leonardi G, Neri G (2012) CO sensing characteristics of hexagonal-shaped CdO nanostructures prepared by microwave irradiation. Sens Actuators B 171–172:853–859

    Article  Google Scholar 

  18. Sivalingam D, Gopalakrishnan JB, Rayappan JBB (2012) Nanostructured mixed ZnO and CdO thinfilm for selective ethanol sensing. Mater Lett 77:117–120

    Article  CAS  Google Scholar 

  19. Chaudhari GN, Bambole DR, Bodade AB (2006) Structural and gas sensing behavior of nanocrystalline BaTiO3 based liquid petroleum gas sensors. Vacuum 81:251–256

    Article  CAS  Google Scholar 

  20. Waghulade RB, Patil PP, Pasricha R (2007) Synthesis and LPG sensing properties of nano-sized cadmium oxide. Talanta 72:594–599

    Article  CAS  Google Scholar 

  21. Chandiramouli R, Jeyaprakash BG (2013) Review of CdO thinfilms. Solid State Sci 16:102–110

    Article  CAS  Google Scholar 

  22. Aishwarya V, Nirmala Devi N, Jeyaprakash BG, Chandiramouli R (2012) Preparation and characterization of highly conducting and optically transparent Fluorine doped CdO thin films. J Appl Sci 12:1630–1635

    Article  Google Scholar 

  23. Amutha S, Jeyaprakash BG, Chandiramouli R (2012) Microstructural and electrical properties of Mn doped nanostructured CdO thin films. J Appl Sci 12:1641–1645

    Article  CAS  Google Scholar 

  24. Vigneshwaran M, Chandiramouli R, Jayaprakash BG, Balamurugan D (2012) Physical properties of spray deposited Mg doped CdO thin films. J Appl Sci 12:1754–1757

    Article  CAS  Google Scholar 

  25. Santos Cruz J, Torres Delgado G, Castanedo Perez R, Zúñiga Romero CI, Zelaya Angel O (2007) Optical and electrical characterization of fluorine doped cadmium oxide thin films prepared by the sol–gel method. Thin Solid Films 515:5381–5385

    Article  CAS  Google Scholar 

  26. Deokate RJ, Pawar SM, Moholkar AV, Sawant VS, Pawar CA, Bhosale CH, Rajpure KY (2008) Spray deposition of highly transparent fluorine doped cadmium oxide thin films. Appl Surf Sci 254:2187–2195

    Article  CAS  Google Scholar 

  27. Henríquez R, Grez P, Muñoz E, Dalchiele EA, Marotti RE, Gómez H (2011) Template-free non-aqueous electrochemical growth of CdO nanorods. Thin Solid Films 520:41–46

    Article  Google Scholar 

  28. Fan DH (2009) Catalyst-free growth and crystal structures of CdO nanowires and nanotubes. J Cryst Growth 311:2300–2304

    Article  CAS  Google Scholar 

  29. Oku T, Kitahara H, Kuno M, Narita I, Suganuma K (2001) Synthesis, atomic structures and arrangement of carbon and boron nitride nanocage materials. Scripta Mater 44:1557–1560

    Article  CAS  Google Scholar 

  30. Yousef A, Barakat NAM, Al-Deyab SS, Nirmala R, Pant B, Kim HY (2012) Encapsulation of CdO/ZnO NPs in PU electrospun nanofibers as novel strategy for effective immobilization of the photocatalysts. Colloids Surf A Physicochem Eng Asp 401:8–16

    Article  CAS  Google Scholar 

  31. Wei S, Castleman AW Jr (1994) Growth pattern of zirconium-carbon clusters. Further evidence for formation of multicage structures. Chem Phys Lett 227:305–311

    Article  CAS  Google Scholar 

  32. Dunkel C, Wark M, Oekermann T, Ostermann R, Smarsly BM (2013) Electrodeposition of zinc oxide on transparent conducting metal oxide nanofibers and its performance in dye sensitized solar cells. Electrochim Acta 90:375–381

    Article  CAS  Google Scholar 

  33. Srinivasaraghavan R, Chandiramouli R, Jeyaprakash BG, Seshadri S (2013) Quantum chemical studies on CdO nanoclusters stability. Spectrochim Acta Part A 102:242–249

    Article  CAS  Google Scholar 

  34. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489

    Article  CAS  Google Scholar 

  35. Mahfouz R, Al-Frag E, Siddiqui MRH, Al-kiali WZ, Karama O (2011) New aqua rhenium oxocomplex; synthesis, characterization, thermal studies, DFT calculations and catalytic oxidations. Arab J Chem 4:119–124

    Article  CAS  Google Scholar 

  36. Bouklah M, Harek H, Touzani R, Hammouti B, Harek Y (2012) DFT and quantum chemical investigation of molecular properties of substituted pyrrolidinones. Arab J Chem 5:163–166

    Article  CAS  Google Scholar 

  37. Droghetti A, Alfè D, Sanvito S (2012) Assessment of density functional theory for iron(II) molecules across the spin-crossover transition. J Chem Phys 137(124303):1–11

    Google Scholar 

  38. Huang W, Bulusu S, Pal R, Zeng XC, Wang LS (2009) CO chemisorption on the surfaces of the golden cages. J Chem Phys 131(234305):1–5

    Google Scholar 

  39. Groenewold GS, Gianotto AK, McIlwain ME, Van Stipdonk MJ, Kullman M, Moore DT, Polfer N, Oomens J, Infante I, Visscher L, Siboulet B, de Jong WA (2008) Infrared spectroscopy of discrete uranyl anion complexes. J Phys Chem A 112(508):521

    Google Scholar 

  40. Harrison RJ, Guest MF, Kendall RA, Bernholdt DE, Wong AT, Stave M, Anchell JL, Hess AC, Littlefield RJ, Fann GL, Nieplocha J, Thomas GS, Elwood D, Tilson JL, Shepard RL, Wagner AF, Foster IT, Lusk E, Stevens R (1996) Toward high-performance computational chemistry: II. A scalable self-consistent field program. J Comp Chem 17:124–132

    Article  CAS  Google Scholar 

  41. Sattler Klaus (2002) The energy gap of clusters nanoparticles, and quantum dots, handbook of thin films materials, vol 5. Nanomaterials and Magnetic Thin Films. Academic Press, San Diego

    Google Scholar 

  42. Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density Functional theory orbital energies. J Phys Chem A 107:4184–4195

    Article  CAS  Google Scholar 

  43. Bandyopadhyay D (2012) Chemisorptions effect of oxygen on the geometries, electronic and magnetic properties of small size Nin (n = 1-6) clusters. J Mol Model 18:737–749

    Article  CAS  Google Scholar 

  44. Dwivedi A, Misra N (2012) Theoretical study of transition metal oxide clusters (TMnOm) [(TM- Pd, Rh, Ru) and (n, m = 1, 2)]. J At Mol Sci 3:297–307

    Google Scholar 

  45. Fukano T, Motohiro T, Ida T, Hashizume H (2005) Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition. J Appl Phys 97(084314):1–7

    Google Scholar 

  46. Yadav PS, Pandey DK (2012) A DFT study for the structural and electronic properties of ZnmSen nanoclusters. Appl Nanosci 2:351–357

    Article  CAS  Google Scholar 

  47. Yadav PS, Pandey DK, Agrawal S, Agrawal BK (2010) Ab initio study of structural, electronic, optical, and vibrational properties of ZnxSy (x + y = 2to5) nanoclusters. J Nanopart Res 12:737–757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Jeyaprakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriram, S., Chandiramouli, R. & Jeyaprakash, B.G. Influence of fluorine substitution on the properties of CdO nanocluster : a DFT approach. Struct Chem 25, 389–401 (2014). https://doi.org/10.1007/s11224-013-0302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0302-5

Keywords

Navigation