Skip to main content
Log in

A DFT study of adsorption and decomposition of nitroamine molecule on Mg(001) surface

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The adsorption and dissociation mechanism of NH2NO2 on the Mg surface have been investigated by the generalized gradient approximation of density functional theory. Calculations employ a supercell (3 × 3 × 3) slab model and three-dimensional periodic boundary conditions. The strong attractive force between oxygen and Mg atoms induces the N–O bond of the NH2NO2 to decompose. The dissociated oxygen atoms and radical fragment of NH2NO2 oxidize readily Mg atoms. The largest adsorption energy is −860.5 kJ/mol. The largest charge transfer is 3.76 e from surface Mg atoms to fragments of NH2NO2. The energy barriers of N–O bond dissociation are in a range of 11.6–36.5 kJ/mol. The adsorption energy of NH2NO2 on the Mg surface compensates the energy needed for the N–O bond dissociation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldshleger UI, Amosov SD (2004) Combust Explos Shock 40(3):275

    Article  Google Scholar 

  2. Miller TF, Herr JD (2004) AIAA 2004–4037:2004

    Google Scholar 

  3. Shafirovich EY, Shiryaev AA, Goldshleger UI (1993) J Propul Power 9:197

    Article  CAS  Google Scholar 

  4. Dreizin EL, Berman CH, Vicenzi EP (2000) Scripta Mater 122:30

    CAS  Google Scholar 

  5. Chen DM, Hsieh WH (1991) J Propul Power 7:250

    Article  CAS  Google Scholar 

  6. Koch EC (2005) Propell Explos Pyrot 30:209

    Article  CAS  Google Scholar 

  7. Makrlík E, Toman P, Vaňura P (2012) Struct Chem 23:765

    Article  Google Scholar 

  8. Yabe T, Uchida S, Ikuta K, Yoshida K, Baasandash C, Mohamed MS, Sakurai Y, Ogata Y, Tuji M, Mori Y, Satoh Y, Ohkubo T, Murahara M, Ikesue A (2006) Appl Phys Lett 89:261107

    Article  Google Scholar 

  9. Yang YJ, He MG (2010) International Conference on Digital Manufacturing and Automation 1: 780

  10. Brewster MQ, Sheridan TA, Ishihara A (1992) J Propul Power 8:760

    Article  CAS  Google Scholar 

  11. Florko IA, Poletaev NI, Florko AV et al (2001) Combus Explos Shock 37:535

    Article  Google Scholar 

  12. Schoenityz M, Dreizin E (2004) J Propul Power 20:1064

    Article  Google Scholar 

  13. Zhou SQ, Zhao FQ, Ju XH, Cheng XC, Yi JH (2010) J Phys Chem C 114:9390

    Article  CAS  Google Scholar 

  14. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Cond Mater 14:2717

    Article  CAS  Google Scholar 

  15. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  16. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  17. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  18. Fischer TH, Almlof J (1992) J Phys Chem 96:9768

    Article  CAS  Google Scholar 

  19. Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J (2003) Comput Mater Sci 28:250

    Article  CAS  Google Scholar 

  20. Amonenko VM, Ivanov VY, Tikhinskij GF, Finkel VA (1962) Phys Met Metallogr 14:47

    Google Scholar 

  21. Tyler JK (1963) J Mol Spectrosc 1:39

    Article  Google Scholar 

  22. Partin DE, Williams DJ, O’Keeffe M (1997) J Solid State Chem 132:56

    Article  CAS  Google Scholar 

  23. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding provided by the Science and Technology on Combustion and Explosion Laboratory (Grant No. 9140C3501021101) and the Key Laboratory for Attapulgite Science and Applied Technology of Jiangsu Province. S.-Q. Zhou thanks the Research Support of Huaiyin Institute of Technology (Grant No. HGA1008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Su-Qin Zhou or Xue-Hai Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, SQ., Li, DH., Zhao, FQ. et al. A DFT study of adsorption and decomposition of nitroamine molecule on Mg(001) surface. Struct Chem 25, 409–417 (2014). https://doi.org/10.1007/s11224-013-0298-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0298-x

Keywords

Navigation