Skip to main content
Log in

Chemistry of HCNH+: mechanisms, structures, and relevance to Titan’s atmosphere

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The chemistry of HCNH+ in Titan’s atmosphere is not completely understood despite previous experimental and theoretical studies. In response to recent suggestions in the literature, we have searched for specific products of the reactions of HCNH+ with H2, CH4, C2H2, and C2H4 using the flowing afterglow-selected ion flow tube technique. We have probed for an association mechanism for reaction with H2, and associative-H2 loss for the reactions involving CH4, C2H2, and C2H4. In all cases, these reaction mechanisms were found to be inefficient pathways for the depletion of HCNH+. Our ab initio computational studies characterize the structures and energies for these mechanisms and indicate that the proposed pathways are endothermic or possess reaction barriers. We compare our studies to previous experimental and computational work, and we suggest other ion-neutral reactions with HCNH+ that have not been included in previous models of Titan’s ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vuitton V, Yelle RV, McEwan MJ (2007) Icarus 191:722

    Article  Google Scholar 

  2. Robertson IP, Cravens TE, Waite JH Jr, Yelle RV, Vuitton V, Coates AJ, Wahlund JE, Ågren K, Mandt K, Magee B, Richard MS, Fattig E (2009) Planet Space Sci 57:1834

    Article  CAS  Google Scholar 

  3. Westlake JH, Waite JH Jr, Mandt KE, Carrasco N, Bell JM, Magee BA, Wahlund JE (2012) J Geophys Res 117:E01003

    Article  Google Scholar 

  4. Herbst E (1976) Astrophys J 205:94

    Article  CAS  Google Scholar 

  5. Smith D, Adams NG (1977) Astrophys J 217:741

    Article  CAS  Google Scholar 

  6. Herbst E (1980) Astrophys J 237:462

    Article  CAS  Google Scholar 

  7. Herbst E (1980) Astrophys J 241:197

    Article  CAS  Google Scholar 

  8. Herbst E, Smith D, Adams NG, McIntosh BJ (1989) J Chem Soc Faraday Trans 2 85:1655

    Article  CAS  Google Scholar 

  9. Wilson PF, Freeman CG, McEwan MJ (1993) Int J Mass Spectrom Ion Process 128:83

    Article  CAS  Google Scholar 

  10. Anicich VG, McEwan MJ (1997) Planet Space Sci 45:897

    Article  CAS  Google Scholar 

  11. Anicich VG, Milligan DB, Fairley DA, McEwan MJ (2000) Icarus 146:118

    Article  CAS  Google Scholar 

  12. Milligan DB, Freeman CG, Maclagan RGAR, McEwan MJ, Wilson PF, Anicich VG (2001) J Am Soc Mass Spectrom 12:557

    Article  CAS  Google Scholar 

  13. Liu G-X, Ding Y-H, Li Z-S, Huang X-R, Sun C-C (2001) J Mol Struct (Theochem) 548:191

    Article  CAS  Google Scholar 

  14. Bera PP, Head-Gordon M, Lee TJ (2011) Astron Astrophys 535:A74

    Article  Google Scholar 

  15. Adams NG, Smith D (1976) Int J Mass Spectrom Ion Phys 21:349

    Article  CAS  Google Scholar 

  16. Adams NG, Smith D (1976) J Phys B 9:1439

    Article  CAS  Google Scholar 

  17. Knight JS, Freeman CG, McEwan MJ, Adams NG, Smith D (1985) Int J Mass Spectrom Ion Process 67:317

    Article  CAS  Google Scholar 

  18. Milligan DB, Fairley DA, Freeman CG, McEwan MJ (2000) Int J Mass Spectrom 202:351

    Article  CAS  Google Scholar 

  19. Notario R, Roux MV, Liebman JF (2010) Struct Chem 21:481

    Article  CAS  Google Scholar 

  20. Bierbaum VM (2003) In: Armentrout PB (ed) Encyclopedia of mass spectrometry, vol 1. Elsevier, Amsterdam

  21. Snow TP, Bierbaum VM (2008) Annu Rev Anal Chem 1:229

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03, revision. Gaussian, Inc., Wallingford

  23. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  25. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  26. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  27. Yang Z, Snow TP, Bierbaum VM (2010) Phys Chem Chem Phys 12:13091

    Article  CAS  Google Scholar 

  28. Thissen R, Vuitton V, Lavvas P, Lemaire J, Dehon C, Dutuit O, Smith MA, Turchini S, Catone D, Yelle RV, Pernot P, Somogyi A, Coreno M (2009) J Phys Chem A 113:11211

    Article  CAS  Google Scholar 

  29. Kaur D, Khanna S, Kaur RP (2010) J Mol Struct (Theochem) 949:14

    Article  CAS  Google Scholar 

  30. Talbi D, Herbst E (1998) Astron Astrophys 333:1007

    CAS  Google Scholar 

  31. Talbi D (1999) Chem Phys Lett 312:291

    Article  CAS  Google Scholar 

  32. Burgers PC, Holmes JL, Terlouw JK (1984) J Am Chem Soc 106:2762

    Article  CAS  Google Scholar 

  33. Hunter EPL, Lias SG (1998) J Phys Chem Ref Data 27:413

    Article  CAS  Google Scholar 

  34. Freeman CG, Harland PW, McEwan MJ (1978) Aust J Chem 31:2157

    Article  CAS  Google Scholar 

  35. NIST Chemistry WebBook (2013) NIST, Gaithersburg. http://webbook.nist.gov/chemistry/. Accessed 10 Apr 2013

Download references

Acknowledgments

We thank Dr. Veronique Vuitton for bringing this issue to our attention and for suggesting this study, and Ditte Thomsen for her support with the computational studies. We gratefully acknowledge support of this study by NASA (NNX10AC78G) and NSF (CHE-1012321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Demarais.

Additional information

Special Issue honoring Prof. Maria Victoria Roux

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demarais, N.J., Yang, Z., Snow, T.P. et al. Chemistry of HCNH+: mechanisms, structures, and relevance to Titan’s atmosphere. Struct Chem 24, 1957–1963 (2013). https://doi.org/10.1007/s11224-013-0275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0275-4

Keywords

Navigation