Skip to main content

Advertisement

Log in

Dibenzofuran and methyldibenzofuran derivatives: assessment of thermochemical data

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Thermochemical data of dibenzofuran, a compound of considerable industrial and environmental significance, obtained from experimental calorimetric and computational techniques are reported in this work. The enthalpy of fusion, (19.4 ± 1.0) kJ mol−1, at the temperature of fusion, (355.52 ± 0.02) K, was determined by differential scanning calorimetry measurements of dibenzofuran. From the standard (p° = 0.1 MPa) molar enthalpies of formation of crystalline dibenzofuran, (−29.2 ± 3.8) kJ mol−1, and of sublimation, (84.5 ± 1.0) kJ mol−1, determined at T = 298.15 K by static bomb combustion calorimetry and by vacuum drop microcalorimetry, respectively, it was possible to calculate the enthalpy of formation of the gaseous compound, (55.0 ± 3.9) kJ mol−1, at the same temperature. The enthalpy of formation in the gaseous phase was also determined from G3(MP2)//B3LYP calculations. The same computational strategy was employed in the calculation of the standard molar enthalpies of formation, at T = 298.15 K, in the gas-phase, of single methylated derivatives of benzofuran and dibenzofuran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2009) Revisiting dibenzothiophene thermochemical data: experimental and computational studies. J Chem Thermodyn 41:1199–1205

    Article  CAS  Google Scholar 

  2. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2009) Energetic studies of two oxygen heterocyclic compounds: xanthone and tetrahydro-γ-pyrone. J Therm Anal Calorim 97:827–833

    Article  CAS  Google Scholar 

  3. Freitas VLS, Monte MJS, Santos LMNBF, Gomes JRB, Ribeiro da Silva MDMC (2009) Energetic studies and phase diagram of thioxanthene. J Phys Chem A 113:12988–12994

    Article  CAS  Google Scholar 

  4. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2010) Molecular energetics of 4-methyldibenzothiophene: an experimental study. J Chem Thermodyn 42:251–255

    Article  CAS  Google Scholar 

  5. Freitas VLS, Ribeiro da Silva MDMC, Gomes JRB (2010) A computational study on the thermochemistry of methylbenzo- and methyldibenzothiophenes. J Mol Struct Theochem 946:20–25

    Article  CAS  Google Scholar 

  6. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2010) Energetic effects of ether and ketone functional groups in 9,10-dihydroanthracene compound. J Chem Thermodyn 42:1248–1254

    Article  CAS  Google Scholar 

  7. Freitas VLS, Gomes JRB, Gales L, Damas AM, Ribeiro da Silva MDMC (2010) Experimental and computational studies on the structural and thermodynamic properties of two heterocyclic sulfur compounds. J Chem Eng Data 55:5009–5017

    Article  CAS  Google Scholar 

  8. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2012) Experimental and computational thermochemical studies of 9-R-xanthene derivatives (R=OH, COOH, CONH2). J Chem Thermodyn 54:108–117

    Article  CAS  Google Scholar 

  9. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2013) A computational study on the energetic and reactivity of some xanthene and thioxanthene derivatives. Struct Chem 24:661–670

    Article  CAS  Google Scholar 

  10. Silva ALR, Cimas A, Ribeiro da Silva MDMC (2013) Experimental and computational thermochemical studies of benzoxazole and two chlorobenzoxadole derivatives. J Chem Thermodyn 57:212–219

    Article  CAS  Google Scholar 

  11. Ribeiro da Silva MDMC, Freitas VLS, Vieira MAA, Sottomayor MJ, Acree WE Jr (2012) Energetic and structural properties of 4-nitro-2,1,3-benzothiadiazole. J Chem Thermodyn 49:146–153

    Article  CAS  Google Scholar 

  12. Cass RC, Fletcher SE, Mortimer CT, Springall HD, White TR (1958) Heats of combustion and molecular structure. Part V. The mean bond energy term for the C−O bond in ethers, and the structures of some cyclic ethers. J Chem Soc 1406–1410

  13. Hansen PC, Eckert CA (1986) An improved transpiration method for the measurement of very low vapor pressures. J Chem Eng Data 31:1–3

    Article  CAS  Google Scholar 

  14. Sabbah R, Antipine I (1987) Etude thermodynamique compare de quelques substances polycycliques. Recherche du lien existant entre leurs grandeurs énergétiques et leur structure. Bull Soc Chim Fr 124:392–400

    Google Scholar 

  15. Chirico RD, Gammon BE, Knipmeyer SE, Nguyen A, Strube MM, Tsonopoulos C, Steele WE (1990) The thermodynamic properties of dibenzofuran. J Chem Thermodyn 22:1075–1096

    Article  CAS  Google Scholar 

  16. Sabbah R (1991) Note: Etude thermodynamique dês molécules de fluoréne et de dibenzofuranne. Bull Soc Chim Fr 128:350

    Google Scholar 

  17. Allinger NL, Yan L (1993) Molecular mechanics (MM3). Calculations of furan, vinyl, ethers and related compounds. J Am Chem Soc 115:11918–11925

    Article  CAS  Google Scholar 

  18. Fujita H, Fujimori H, Oguni M (1995) Glass transitions in the stable crystalline states of dibenzofuran and fluorine. J Chem Thermodyn 27:927–938

    Article  CAS  Google Scholar 

  19. Bird CW (1996) The application of group additivity parameters to the prediction of the enthalpies of formation of heteroaromatic compounds. Tetrahedron 52:14335–14340

    Article  CAS  Google Scholar 

  20. Notario R, Roux MV, Castaño O (2001) The enthalpy of formation of dibenzofuran and some related oxygen-containing heterocycles in the gas phase. Phys Chem Chem Phys 3:3717–3721

    Article  CAS  Google Scholar 

  21. Verevkin SP (2003) Enthalpy of sublimation of dibenzofuran: a redetermination. Phys Chem Chem Phys 5:710–712

    Article  CAS  Google Scholar 

  22. Li X-W, Shibata E, Kasai E, Nakamura T (2004) Vapor pressures and enthalpies of sublimation of 17 polychlorinated dibenzo-p-dioxins and five polychlorinated dibenzofuran. Environ Toxicol Chem 23:348–354

    Article  CAS  Google Scholar 

  23. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) Gaussian-3 theory using density functional geometries and zero-point energies. J Chem Phys 110:7650–7657

    Article  CAS  Google Scholar 

  24. Certificate of Analysis, Standard Reference Material® 39j, Benzoic Acid Calorimetric Standard (1995) National Institute of Standards & Technology, Washington

  25. Gundry HA, Harrop D, Head AJ, Lewis GB (1969) Thermodynamic properties of organic oxygen compounds 21. Enthalpies of combustion of benzoic acid, pentan-1-ol, octan-1-ol, and hexadecan-1-ol. J Chem Thermodyn 1:321–332

    Article  CAS  Google Scholar 

  26. Bickerton J, Pilcher G, Al-Takhin G (1984) Enthalpies of combustion of the three aminopyridines and the three cyanopyridines. J Chem Thermodyn 16:373–378

    Article  CAS  Google Scholar 

  27. Ribeiro da Silva MDMC, Santos LMNBF, Silva ALR, Fernandes O, Acree WE Jr (2003) Energetics of 6-methoxyquinoline and 6-methoxyquinoline N-oxide: the dissociation enthalpy of the (N–O) bond. J Chem Thermodyn 35:1093–1100

    Article  CAS  Google Scholar 

  28. Coops J, Jessup RS, van Nes K (1956) In: Rossini FD (ed) Experimental thermochemistry, vol 1, (Chapter 3). Interscience, New York

  29. Skinner HA, Snelson A (1960) The heats of combustion of the four isomeric butyl alcohols. Trans Faraday Soc 56:1776–1783

    Article  CAS  Google Scholar 

  30. Santos LMNBF (1995) Ph.D. Thesis, University of Porto, Porto

  31. Santos LMNBF, Silva MT, Schröder B, Gomes L (2007) Labtermo: methodologies for the calculation of the corrected temperature rise in isoperibol calorimetry. J Therm Anal Calorim 89:175–180

    Article  CAS  Google Scholar 

  32. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Pilcher G (1984) The construction, calibration and use of a new high-precision static-bomb calorimeter. Rev Port Quím 26:163–172

    CAS  Google Scholar 

  33. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data 11(Suppl 2):1–352

    Google Scholar 

  34. Reppart WJ, Gallucci JC, Lundstedt AP, Gerkin RE (1984) Order and disorder in the structure of dibenzofuran, C12H8O. Acta Cryst C 40:1572–1576

    Article  Google Scholar 

  35. Washburn EW (1933) Standard states for bomb calorimetry. J Res Natl Bur Stand 10:525–558

    Article  CAS  Google Scholar 

  36. Hubbard WN, Scott DW. Waddington G (1956) In: Rossini FD (ed) Experimental thermochemistry, vol 1, (Chapter 5). Interscience, New York

  37. Wieser ME, Coplen TB (2011) Atomic weights of the elements 2009 (IUPAC Technical report). Pure Appl Chem 83:359–396

    Article  CAS  Google Scholar 

  38. Adedeji FA, Brown DLS, Connor JA, Leung WL, Paz-Andrade IM, Skinner HA (1975) Thermochemistry of arene chromium tricarbonyls and the strenghts of arene–chromium bonds. J Organomet Chem 97:221–228

    Article  CAS  Google Scholar 

  39. Santos LMNBF, Schröder B, Fernandes OOP, Ribeiro da Silva MAV (2004) Measurement of enthalpies of sublimation by drop method in a Calvet type calorimeter: design and test of a new system. Thermochim Acta 415:15–20

    Article  CAS  Google Scholar 

  40. Sabbah R, Xu-wu A, Chickos JS, Planas Leitão ML, Roux MV, Torres LA (1999) Reference materials for calorimetry and differential thermal analysis. Thermochim Acta 331:93–208

    Article  CAS  Google Scholar 

  41. Sarge SM, Gmelin E, Hohne GWH, Cammenga HK, Hemminger W, Eysel W (1994) The caloric calibration of scanning calorimeters. Thermochim Acta 247:129–168

    Article  CAS  Google Scholar 

  42. Gmelin E, Sarge SM (1995) Calibration of differential scanning calorimeters. Pure Appl Chem 67:1789–1800

    Article  CAS  Google Scholar 

  43. Gmelin E, Sarge SM (2000) Temperature, heat and heat flow rate calibration of differential scanning calorimeters. Thermochim Acta 347:9–13

    Article  CAS  Google Scholar 

  44. Gaussian 03, Revision C.01. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc., Wallingford

  45. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  47. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem 111:11683–11700

    Article  CAS  Google Scholar 

  48. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison

  49. Irikura KK (2002) THERMO.PL, National Institute of Standards and Technology, Gaithersburg

  50. Cox JD, Wagman DD, Medvedev VA (1989) CODATA key values for thermodynamics. Hemisphere, New York

    Google Scholar 

  51. Pedley JB (1994) Thermochemical data and structures of organic compounds thermodynamics. Research Centre, College Station

    Google Scholar 

  52. Steele WV, Chirico RD (1990) Cooperative Agreement No. FC22-83FE60149 (NIPEP-457), IIT Research Institute, NIPEP, Bartlesville

Download references

Acknowledgments

This work was mainly supported by Fundação para a Ciência e a Tecnologia (FCT), Lisbon, Portugal, and European Social Fund through strategic projects Pest-C/QUI/UI0081/2011 and Pest-C/CTM/LA0011/2011 awarded to CIQUP and CICECO, respectively. VLSF thanks FCT for Ph.D. research Grant SFRH/BD/41672/2007 and for the post-doctoral Grant SFRH/BPD/78552/2011. JRBG holds a Ciência 2007 position of the Portuguese Ministry of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. M. C. Ribeiro da Silva.

Additional information

Special Issue in honor of Prof. Maria Victoria Roux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information

Table S1 with the standard (p° = 0.1 MPa) molar heat capacities in the gaseous phase for dibenzofuran, determined by B3LYP/6-31G(d) calculations; Table S2 with the typical combustion results and standard (p° = 0.1 MPa) massic energy of combustion of dibenzofuran, at T = 298.15 K, and Table S3 with the G3(MP2)//B3LYP absolute enthalpies and the experimental gas-phase standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, for dibenzofuran, for the methyl derivatives of benzofuran and dibenzofuran and for all the auxiliary species considered in the working reactions 5–19 (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, V.L.S., Gomes, J.R.B. & Ribeiro da Silva, M.D.M.C. Dibenzofuran and methyldibenzofuran derivatives: assessment of thermochemical data. Struct Chem 24, 1923–1933 (2013). https://doi.org/10.1007/s11224-013-0272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0272-7

Keywords

Navigation