Skip to main content
Log in

A computational study on the energetics and reactivity of some xanthene and thioxanthene derivatives

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A computational study has been carried out for xanthene and thioxanthene homologous derivatives with keto, hydroxyl, carboxyl, and carboxamide functional groups on position 9, contributing to the understanding of their energetics and reactivity. For that it is presented and compared with the molecular structures, the electrostatic potential energy maps, and the electronic properties of all these heteropolycyclic compounds. The estimation of the standard molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, was made only for the thioxanthydrol, thioxanthene-9-carboxylic acid, and thioxanthene-9-carboxamide using the experimental values available in the literature for the homologous compounds containing oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2009) Revisiting dibenzothiophene thermochemical data: experimental and computational studies. J Chem Thermodyn 41:1199–1205

    Article  CAS  Google Scholar 

  2. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2010) Molecular energetics of 4-methyldibenzothiophene: an experimental study. J Chem Thermodyn 42:251–255

    Article  CAS  Google Scholar 

  3. Freitas VLS, Ribeiro da Silva MDMC, Gomes JRB (2010) A computational study on the thermochemistry of methylbenzo- and methyldibenzothiophenes. J Mol Struct 946:20–25

    Article  CAS  Google Scholar 

  4. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2010) Energetic effects of ether and ketone functional groups in 9,10-dihydroanthracene compound. J Chem Thermodyn 42:1248–1254

    Article  CAS  Google Scholar 

  5. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2009) Energetic studies of two oxygen heterocyclic compounds: xanthone and tetrahydro-γ-pyrone. J Therm Anal Calorim 97:827–833

    Article  CAS  Google Scholar 

  6. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2012) Experimental and computational thermochemical studies of 9-R-xanthene derivatives (R = OH, COOH, CONH2). J Chem Thermodyn 54:108–117

    Article  CAS  Google Scholar 

  7. Freitas VLS, Monte MJS, Santos LMNBF, Gomes JRB, Ribeiro da Silva MDMC (2009) Energetic studies and phase diagram of thioxanthene. J Phys Chem A 113:12988–12994

    Article  CAS  Google Scholar 

  8. Freitas VLS, Gomes JRB, Gales L, Damas AM, Ribeiro da Silva MDMC (2010) Experimental and computational studies on the structural and thermodynamic properties of two heterocyclic sulfur compounds. J Chem Eng Data 55:5009–5017

    Article  CAS  Google Scholar 

  9. Woo S, Jung J, Lee C, Kwon Y, Na Y (2007) Synthesis of new xanthone analogues and their biological activity test—cytotoxicity, topoisomerase II inhibition, and DNA cross-linking study. Bioorg Med Chem Lett 17:1163–1166

    Article  CAS  Google Scholar 

  10. Castanheiro RAP, Pinto MMM, Silva AMS, Cravo SMM, Gales L, Damas AM, Nazareth N, Nascimento MS, Eaton G (2007) Dihydroxyxanthones prenylated derivatives: synthesis, structure elucidation, and growth inhibitory activity on human tumor cell lines with improvement of selectivity for MCF-7. Bioorg Med Chem 15:6080–6088

    Article  CAS  Google Scholar 

  11. Pinto MMM, Sousa ME, Nascimento MSJ (2005) Xanthone derivatives: new insights in biological activities. Curr Med Chem 12:2517–2538

    Article  CAS  Google Scholar 

  12. Naya A, Sagara Y, Ohwaki K, Saeki T, Ichikawa D, Iwasawa Y, Noguchi K, Ohtake N (2001) Design, synthesis and discovery of a novel CCR1 antagonist. J Med Chem 44:1429–1435

    Article  CAS  Google Scholar 

  13. Jastrzębska-Więsek M, Librowski T, Czarnecki R, Marona H, Nowak G (2003) Central activity of new xanthone derivatives with chiral center in some pharmacological tests in mice. Pol J Pharmacol 55:461–465

    Article  Google Scholar 

  14. Palmeira A, Vasconcelos MH, Paiva A, Fernandes MX, Pinto MMM, Sousa ME (2012) Dual inhibitors of P-glycoprotein and tumor cell growth: (Re)discovering thioxanthones. Biochem Pharmacol 83:57–68

    Article  CAS  Google Scholar 

  15. Belal F, Hefnawy MM, Aly FA (1997) Analysis of pharmaceutically-important thioxanthene derivatives. J Pharm Biomed Anal 16:369–376

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.01. Gaussian, Inc., Wallingford CT

  17. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) Gaussian-3 theory using density functional geometries and zero-point energies. J Chem Phys 110:7650–7657

    Article  CAS  Google Scholar 

  18. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  20. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem 111:11683–11700

    Article  CAS  Google Scholar 

  21. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison

  22. Harding ME, Vásquez J, Ruscic B, Wilson AK, Gauss J, Stanton JF (2008) High-accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview. J Chem Phys 128:114111

    Article  Google Scholar 

  23. Flemimg I (2010) Molecular orbitals and organic chemical reactions, reference edition. Wiley, Hoboken

Download references

Acknowledgments

This work was mainly supported by Fundação para a Ciência e a Tecnologia (FCT), Lisbon, Portugal, and European Social Fund through strategic projects PEst-C/QUI/UI0081/2011 and PEst-C/CTM/LA0011/2011 awarded to CIQUP and CICECO, respectively. VLSF thanks FCT for Ph. D. research grant SFRH/BD/41672/2007 and for the post-doctoral grant SFRH/BPD/78552/2011. JRBG holds a Ciência 2007 position of the Portuguese Ministry of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. M. C. Ribeiro da Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, V.L.S., Gomes, J.R.B. & Ribeiro da Silva, M.D.M.C. A computational study on the energetics and reactivity of some xanthene and thioxanthene derivatives. Struct Chem 24, 661–670 (2013). https://doi.org/10.1007/s11224-012-0117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0117-9

Keywords

Navigation